Deletions of ttrA and pduA genes in Salmonella enterica affect survival within chicken-derived HD-11 macrophages

Adkins JN, Mottaz HM, Norbeck AD et al (2006) Analysis of the Salmonella typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics 5:1450–1461. https://doi.org/10.1074/mcp.M600139-MCP200

Article  CAS  PubMed  Google Scholar 

Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2. https://doi.org/10.1038/msb4100050

Barrow PA, Huggins MB, Lovellt MA (1994) Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system

Beug H, von Kirchbach A, Döderlein G et al (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18:375–390. https://doi.org/10.1016/0092-8674(79)90057-6

Article  CAS  PubMed  Google Scholar 

Brown EW, Bell R, Zhang G et al (2021) Salmonella Genomics in Public Health and Food Safety. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0008-2020. 9:eESP-0008-2020

Article  PubMed  PubMed Central  Google Scholar 

Cabrera JM, Saraiva MMS, Rodrigues Alves LB et al (2023) Salmonella enterica serovars in absence of ttrA and pduA genes enhance the cell immune response during chick infections. Sci Rep 13. https://doi.org/10.1038/s41598-023-27741-x

Carter M, Shieh J (2015) Cell Culture Techniques. In: Carter M, Shieh J (eds) Guide to Research Techniques in Neuroscience. Academic Press, pp 295–310

Centers for Disease Control and Prevention – CDC (2018) Salmonella Infections Linked to Chicken Salad. https://www.cdc.gov/salmonella/typhimurium-02-18/index.html. Accessed 15 August 2023

Centers for Disease Control and Prevention – CDC (2013) Multistate Outbreak of Multidrug-Resistant Salmonella Heidelberg Infections Linked to Foster Farms Brand Chicken (Final Update). https://www.cdc.gov/salmonella/heidelberg-10-13/index.html. Accessed 15 August 2023

Cheng S, Sinha S, Fan C et al (2011) Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella. J Bacteriol 193(6):1385–1392. https://doi.org/10.1128/JB.01473-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

European Centre for Disease Prevention and Control – ECDC, European Food Safety Authority – EFSA (2021) Multi-country outbreak of Salmonella Enteritidis sequence type (ST)11 infections linked to poultry products in the EU/EEA and the United Kingdom. https://doi.org/10.2903/sp.efsa.2021.en-6486. EFSA Supporting Publications 18:

Faber F, Thiennimitr P, Spiga L, Byndloss MX, Litvak Y, Lawhon S, Andrews-Polymenis HL, Winter SE, Bäumler AJ (2017) Respiration of microbiota-derived 1,2-propanediol drives Salmonella expansion during colitis. PLoS Pathog 13:1–19. https://doi.org/10.1371/journal.ppat.1006129

Article  CAS  Google Scholar 

Fels U, Gevaert K, Van Damme P (2020) Bacterial Genetic Engineering by means of Recombineering for Reverse Genetics. Front Microbiol 11

Góes V, Monte DFM, Saraiva M, de MS et al (2022) Salmonella Heidelberg side-step gene loss of respiratory requirements in chicken infection model. Microb Pathog 171. https://doi.org/10.1016/j.micpath.2022.105725

Harvey PC, Watson M, Hulme S et al (2011) Salmonella enterica serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun 79:4105–4121. https://doi.org/10.1128/IAI.01390-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensel M, Hinsley AP, Nikolaus T et al (1999) The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32:275–287. https://doi.org/10.1046/j.1365-2958.1999.01345.x

Article  CAS  PubMed  Google Scholar 

Huang K, Herrero-Fresno A, Thøfner I et al (2019) Interaction differences of the avian host-specific Salmonella enterica Serovar Gallinarum, the host-generalist S. Typhimurium, and the cattle host-adapted S. Dublin with chicken primary macrophage. Infect Immun 87:101128iai00552–101128iai00519. https://doi.org/10.1128/iai.00552-19

Article  CAS  Google Scholar 

Jiang L, Wang P, Song X et al (2021) Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. Nat Commun 12. https://doi.org/10.1038/s41467-021-21186-4

Kipper D, Mascitti AK, De Carli S et al (2022) Emergence, dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 9

Klumpp J, Fuchs TM (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiol (N Y) 153:1207–1220. https://doi.org/10.1099/mic.0.2006/004747-0

Article  CAS  Google Scholar 

Lawley TD, Bouley DM, Hoy YE et al (2008) Host transmission of Salmonella enterica Serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76:403–416. https://doi.org/10.1128/iai.01189-07

Article  CAS  PubMed  Google Scholar 

Lee E-J, Pontes MH, Groisman EA (2013) A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F1Fo ATP synthase. Cell 154:146–156. https://doi.org/10.1016/j.cell.2013.06.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liss V, Swart AL, Kehl A et al (2017) Salmonella enterica remodels the host cell endosomal system for efficient Intravacuolar Nutrition. Cell Host Microbe 21:390–402. https://doi.org/10.1016/j.chom.2017.02.005

Article  CAS  PubMed  Google Scholar 

Ménard S, Lacroix-Lamandé S, Ehrhardt K et al (2022) Cross-talk between the intestinal epithelium and Salmonella Typhimurium. Front Microbiol 13

Monte DFM, Saraiva MMS, Cabrera JM et al (2024) Unravelling the role of anaerobic metabolism (pta-ackA) and virulence (misL and ssa) genes in Salmonella Heidelberg shedding using chicken infection model. Brazilian J Microbiol. https://doi.org/10.1007/s42770-023-01241-6

Article  Google Scholar 

Plumb I, Fields P (Patti), Bruce B (eds) (2023) Salmonellosis, Nontyphoidal. In: CDC Yellow Book 2024: Health Information for International Travel

Retamal Patricio AND, Castillo-Ruiz MANDMGC (2009) Characterization of MgtC, a virulence factor of Salmonella enterica Serovar Typhi. PLoS ONE 4:1–6. https://doi.org/10.1371/journal.pone.0005551

Article  CAS  Google Scholar 

Rivera-Chávez F, Winter SE, Lopez CA et al (2013) Salmonella Uses Energy Taxis to benefit from intestinal inflammation. PLoS Pathog 9. https://doi.org/10.1371/journal.ppat.1003267

Rodrigues Alves LB, de Freitas Neto OC, de Mesquita Souza Saraiva M et al (2024) Salmonella Gallinarum mgtC mutant shows a delayed fowl typhoid progression in chicken. Gene 892:147827. https://doi.org/10.1016/j.gene.2023.147827

Article  CAS  PubMed  Google Scholar 

Saraiva MMS, Rodrigues Alves LB, Monte DFM et al (2021) Deciphering the role of ttrA and pduA genes for Salmonella enterica serovars in a chicken infection model. Avian Pathol 50:257–268. https://doi.org/10.1080/03079457.2021.1909703

Article  CAS  Google Scholar 

Smith RL, Kaczmarek MT, Kucharski LM, Maguire ME (1998) Magnesium transport in Salmonella typhimurium: regulation of mgtA and mgtCB during invasion of epithelial and macrophage cells. Microbiol (N Y) 144:1835–1843. https://doi.org/10.1099/00221287-144-7-1835

Article  CAS  Google Scholar 

Thiennimitr P, Winter SE, Winter MG et al (2011) Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci 108:17480–17485. https://doi.org/10.1073/pnas.1107857108

Article  PubMed  PubMed Central  Google Scholar 

Vinueza-Burgos C, Medina-Santana J, Maldonado R et al (2023) Evaluation of virulence of Salmonella Infantis and Salmonella Enteritidis with in vitro and in vivo models. Foodborne Pathog Dis 20:484–491. https://doi.org/10.1089/fpd.2023.0060

Article  CAS  PubMed  Google Scholar 

West AP, Brodsky IE, Rahner C et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480. https://doi.org/10.1038/nature09973

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winter SE, Thiennimitr P, Winter MG et al (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–429. https://doi.org/10.1038/nature09415

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif