Adkins JN, Mottaz HM, Norbeck AD et al (2006) Analysis of the Salmonella typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics 5:1450–1461. https://doi.org/10.1074/mcp.M600139-MCP200
Article CAS PubMed Google Scholar
Baba T, Ara T, Hasegawa M et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2. https://doi.org/10.1038/msb4100050
Barrow PA, Huggins MB, Lovellt MA (1994) Host specificity of Salmonella infection in chickens and mice is expressed in vivo primarily at the level of the reticuloendothelial system
Beug H, von Kirchbach A, Döderlein G et al (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18:375–390. https://doi.org/10.1016/0092-8674(79)90057-6
Article CAS PubMed Google Scholar
Brown EW, Bell R, Zhang G et al (2021) Salmonella Genomics in Public Health and Food Safety. EcoSal Plus. https://doi.org/10.1128/ecosalplus.ESP-0008-2020. 9:eESP-0008-2020
Article PubMed PubMed Central Google Scholar
Cabrera JM, Saraiva MMS, Rodrigues Alves LB et al (2023) Salmonella enterica serovars in absence of ttrA and pduA genes enhance the cell immune response during chick infections. Sci Rep 13. https://doi.org/10.1038/s41598-023-27741-x
Carter M, Shieh J (2015) Cell Culture Techniques. In: Carter M, Shieh J (eds) Guide to Research Techniques in Neuroscience. Academic Press, pp 295–310
Centers for Disease Control and Prevention – CDC (2018) Salmonella Infections Linked to Chicken Salad. https://www.cdc.gov/salmonella/typhimurium-02-18/index.html. Accessed 15 August 2023
Centers for Disease Control and Prevention – CDC (2013) Multistate Outbreak of Multidrug-Resistant Salmonella Heidelberg Infections Linked to Foster Farms Brand Chicken (Final Update). https://www.cdc.gov/salmonella/heidelberg-10-13/index.html. Accessed 15 August 2023
Cheng S, Sinha S, Fan C et al (2011) Genetic analysis of the protein shell of the microcompartments involved in coenzyme B12-dependent 1,2-propanediol degradation by Salmonella. J Bacteriol 193(6):1385–1392. https://doi.org/10.1128/JB.01473-10
Article CAS PubMed PubMed Central Google Scholar
European Centre for Disease Prevention and Control – ECDC, European Food Safety Authority – EFSA (2021) Multi-country outbreak of Salmonella Enteritidis sequence type (ST)11 infections linked to poultry products in the EU/EEA and the United Kingdom. https://doi.org/10.2903/sp.efsa.2021.en-6486. EFSA Supporting Publications 18:
Faber F, Thiennimitr P, Spiga L, Byndloss MX, Litvak Y, Lawhon S, Andrews-Polymenis HL, Winter SE, Bäumler AJ (2017) Respiration of microbiota-derived 1,2-propanediol drives Salmonella expansion during colitis. PLoS Pathog 13:1–19. https://doi.org/10.1371/journal.ppat.1006129
Fels U, Gevaert K, Van Damme P (2020) Bacterial Genetic Engineering by means of Recombineering for Reverse Genetics. Front Microbiol 11
Góes V, Monte DFM, Saraiva M, de MS et al (2022) Salmonella Heidelberg side-step gene loss of respiratory requirements in chicken infection model. Microb Pathog 171. https://doi.org/10.1016/j.micpath.2022.105725
Harvey PC, Watson M, Hulme S et al (2011) Salmonella enterica serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun 79:4105–4121. https://doi.org/10.1128/IAI.01390-10
Article CAS PubMed PubMed Central Google Scholar
Hensel M, Hinsley AP, Nikolaus T et al (1999) The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32:275–287. https://doi.org/10.1046/j.1365-2958.1999.01345.x
Article CAS PubMed Google Scholar
Huang K, Herrero-Fresno A, Thøfner I et al (2019) Interaction differences of the avian host-specific Salmonella enterica Serovar Gallinarum, the host-generalist S. Typhimurium, and the cattle host-adapted S. Dublin with chicken primary macrophage. Infect Immun 87:101128iai00552–101128iai00519. https://doi.org/10.1128/iai.00552-19
Jiang L, Wang P, Song X et al (2021) Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence. Nat Commun 12. https://doi.org/10.1038/s41467-021-21186-4
Kipper D, Mascitti AK, De Carli S et al (2022) Emergence, dissemination and Antimicrobial Resistance of the Main Poultry-Associated Salmonella Serovars in Brazil. Vet Sci 9
Klumpp J, Fuchs TM (2007) Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiol (N Y) 153:1207–1220. https://doi.org/10.1099/mic.0.2006/004747-0
Lawley TD, Bouley DM, Hoy YE et al (2008) Host transmission of Salmonella enterica Serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76:403–416. https://doi.org/10.1128/iai.01189-07
Article CAS PubMed Google Scholar
Lee E-J, Pontes MH, Groisman EA (2013) A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F1Fo ATP synthase. Cell 154:146–156. https://doi.org/10.1016/j.cell.2013.06.004
Article CAS PubMed PubMed Central Google Scholar
Liss V, Swart AL, Kehl A et al (2017) Salmonella enterica remodels the host cell endosomal system for efficient Intravacuolar Nutrition. Cell Host Microbe 21:390–402. https://doi.org/10.1016/j.chom.2017.02.005
Article CAS PubMed Google Scholar
Ménard S, Lacroix-Lamandé S, Ehrhardt K et al (2022) Cross-talk between the intestinal epithelium and Salmonella Typhimurium. Front Microbiol 13
Monte DFM, Saraiva MMS, Cabrera JM et al (2024) Unravelling the role of anaerobic metabolism (pta-ackA) and virulence (misL and ssa) genes in Salmonella Heidelberg shedding using chicken infection model. Brazilian J Microbiol. https://doi.org/10.1007/s42770-023-01241-6
Plumb I, Fields P (Patti), Bruce B (eds) (2023) Salmonellosis, Nontyphoidal. In: CDC Yellow Book 2024: Health Information for International Travel
Retamal Patricio AND, Castillo-Ruiz MANDMGC (2009) Characterization of MgtC, a virulence factor of Salmonella enterica Serovar Typhi. PLoS ONE 4:1–6. https://doi.org/10.1371/journal.pone.0005551
Rivera-Chávez F, Winter SE, Lopez CA et al (2013) Salmonella Uses Energy Taxis to benefit from intestinal inflammation. PLoS Pathog 9. https://doi.org/10.1371/journal.ppat.1003267
Rodrigues Alves LB, de Freitas Neto OC, de Mesquita Souza Saraiva M et al (2024) Salmonella Gallinarum mgtC mutant shows a delayed fowl typhoid progression in chicken. Gene 892:147827. https://doi.org/10.1016/j.gene.2023.147827
Article CAS PubMed Google Scholar
Saraiva MMS, Rodrigues Alves LB, Monte DFM et al (2021) Deciphering the role of ttrA and pduA genes for Salmonella enterica serovars in a chicken infection model. Avian Pathol 50:257–268. https://doi.org/10.1080/03079457.2021.1909703
Smith RL, Kaczmarek MT, Kucharski LM, Maguire ME (1998) Magnesium transport in Salmonella typhimurium: regulation of mgtA and mgtCB during invasion of epithelial and macrophage cells. Microbiol (N Y) 144:1835–1843. https://doi.org/10.1099/00221287-144-7-1835
Thiennimitr P, Winter SE, Winter MG et al (2011) Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci 108:17480–17485. https://doi.org/10.1073/pnas.1107857108
Article PubMed PubMed Central Google Scholar
Vinueza-Burgos C, Medina-Santana J, Maldonado R et al (2023) Evaluation of virulence of Salmonella Infantis and Salmonella Enteritidis with in vitro and in vivo models. Foodborne Pathog Dis 20:484–491. https://doi.org/10.1089/fpd.2023.0060
Article CAS PubMed Google Scholar
West AP, Brodsky IE, Rahner C et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480. https://doi.org/10.1038/nature09973
Article CAS PubMed PubMed Central Google Scholar
Winter SE, Thiennimitr P, Winter MG et al (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–429. https://doi.org/10.1038/nature09415
Comments (0)