The indoors microbiome and human health

Blaustein, R. A. et al. Toothbrush microbiomes feature a meeting ground for human oral and environmental microbiota. Microbiome 9, 32 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben Maamar, S., Hu, J. & Hartmann, E. M. Implications of indoor microbial ecology and evolution on antibiotic resistance. J. Expo. Sci. Environ. Epidemiol. 30, 1–15 (2020).

Article  PubMed  Google Scholar 

Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol. 9, 84 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin, N. et al. Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biol. 21, 55 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gibbons, S. M. The built environment is a microbial wasteland. mSystems 1, e00033–e00116 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Ishaq, S. L. et al. Introducing the microbes and social equity working group: considering the microbial components of social, environmental, and health justice. mSystems 6, e0047121 (2021).

Article  PubMed  Google Scholar 

Gilbert, J. A. & Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 16, 661–670 (2018).

Article  CAS  PubMed  Google Scholar 

Prussin, A. J. II & Marr, L. C. Sources of airborne microorganisms in the built environment. Microbiome 3, 78 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Pausan, M.-R., Blohs, M., Mahnert, A. & Moissl-Eichinger, C. The sanitary indoor environment — a potential source for intact human-associated anaerobes. npj Biofilms Microbiomes 8, 44 (2022). This study demonstrates that most of bacterial and archaeal taxa in the built environment are of human origin and that aerobic and stress-resistant taxa have a survival advantage.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scaturro, M. et al. Premise plumbing bacterial communities in four European cities and their association with Legionella. Front. Microbiomes https://doi.org/10.3389/frmbi.2023.1170824 (2023).

Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lax, S. et al. Bacterial colonization and succession in a newly opened hospital. Sci. Transl. Med. 9, eaah6500 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W. W. & Peccia, J. Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air 22, 339–351 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Young, G. R., Sherry, A. & Smith, D. L. Built environment microbiomes transition from outdoor to human-associated communities after construction and commissioning. Sci. Rep. 13, 15854 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kembel, S. W. et al. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 6, 1469–1479 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoisington, A. J. et al. Ten questions concerning the built environment and mental health. Build. Environ. 155, 58–69 (2019).

Article  Google Scholar 

Meadow, J. F. et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 24, 41–48 (2014).

Article  CAS  PubMed  Google Scholar 

Carstens, C. K., Salazar, J. K., Sharma, S. V., Chan, W. & Darkoh, C. Evaluation of the kitchen microbiome and food safety behaviors of predominantly low-income families. Front. Microbiol. 13, 987925 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Flores, G. E. et al. Diversity, distribution and sources of bacteria in residential kitchens. Environ. Microbiol. 15, 588–596 (2013).

Article  CAS  PubMed  Google Scholar 

Adams, R. I., Bateman, A. C., Bik, H. M. & Meadow, J. F. Microbiota of the indoor environment: a meta-analysis. Microbiome 3, 49 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Gibbons, S. M. et al. Ecological succession and viability of human-associated microbiota on restroom surfaces. Appl. Environ. Microbiol. 81, 765–773 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Cox, J. et al. Associations of observed home dampness and mold with the fungal and bacterial dust microbiomes. Environ. Sci. Process. Impacts 23, 491–500 (2021).

Article  CAS  PubMed  Google Scholar 

Jayaprakash, B. et al. Indoor microbiota in severely moisture damaged homes and the impact of interventions. Microbiome 5, 138 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lai, P. S. et al. The classroom microbiome and asthma morbidity in children attending 3 inner-city schools. J. Allergy Clin. Immunol. 141, 2311–2313 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Green, J. L. Can bioinformed design promote healthy indoor ecosystems? Indoor Air 24, 113–115 (2014).

Article  PubMed  Google Scholar 

Jin, L. et al. Integrating environmental dimensions of ‘One Health’ to combat antimicrobial resistance: essential research needs. Environ. Sci. Technol. 56, 14871–14874 (2022).

Article  CAS  PubMed  Google Scholar 

Fahimipour, A. K. et al. Antimicrobial chemicals associate with microbial function and antibiotic resistance indoors. mSystems 3, e00200-18 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hartmann, E. M. et al. Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome. Environ. Sci. Technol. 50, 9807–9815 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahnert, A. et al. Man-made microbial resistances in built environments. Nat. Commun. 10, 968 (2019). This study demonstrates that increasing isolation within an indoor space is associated with decreased microbial diversity and a shift from Gram-positive bacteria such as Actinobacteria and Firmicutes, to Gram-negative Proteobacteria, many of which are antibiotic-resistant.

Article  PubMed  PubMed Central  Google Scholar 

Guevarra, R. B. et al. Metagenomic characterization of bacterial community and antibiotic resistance genes found in the mass transit system in Seoul, South Korea. Ecotoxicol. Environ. Saf. 246, 114176 (2022).

Comments (0)

No login
gif