Cancer organoids 2.0: modelling the complexity of the tumour immune microenvironment

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article  CAS  PubMed  Google Scholar 

de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

Article  PubMed  Google Scholar 

Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palucka, A. K. & Coussens, L. M. The basis of oncoimmunology. Cell 164, 1233–1247 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

Article  CAS  PubMed  Google Scholar 

Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

Article  CAS  PubMed  Google Scholar 

Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

Article  CAS  PubMed  Google Scholar 

Carlson, R. D., Flickinger, J. C. Jr & Snook, A. E. Talkin’ toxins: from Coley’s to modern cancer immunotherapy. Toxins 12, 241 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linehan, J. L. & Delamarre, L. Teamwork by different T-cell types boosts tumour destruction by immunotherapy. Nature 574, 639–640 (2019).

Article  CAS  PubMed  Google Scholar 

Moral, J. A. et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579, 130–135 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sautes-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

Article  CAS  PubMed  Google Scholar 

Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

Article  CAS  PubMed  Google Scholar 

Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

Article  CAS  PubMed  Google Scholar 

Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066.e25 (2022).

Article  CAS  PubMed  Google Scholar 

van Krimpen, A. et al. Immune suppression in the tumor-draining lymph node corresponds with distant disease recurrence in patients with melanoma. Cancer Cell 40, 798–799 (2022).

Article  PubMed  Google Scholar 

Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e8 (2020).

Article  CAS  PubMed  Google Scholar 

Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015). This study describes the clinical response of ICB in patients with progressive metastatic CRC and non-CRC with mismatch repair deficiency.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Pilato, M. et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570, 112–116 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mair, F. et al. Extricating human tumour immune alterations from tissue inflammation. Nature 605, 728–735 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vignali, P. D. A. et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat. Immunol. 24, 267–279 (2023).

Article  CAS  PubMed  Google Scholar 

Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dougan, M., Luoma, A. M., Dougan, S. K. & Wucherpfennig, K. W. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell 184, 1575–1588 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Twomey, J. D. & Zhang, B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 23, 39 (2021).

Article  PubMed  Google Scholar 

Comments (0)

No login
gif