Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).
Article PubMed PubMed Central Google Scholar
Johnson, D. B. et al. Immune checkpoint inhibitor toxicities: systems-based approaches to improve patient care and research. Lancet Oncol. 21, e398–e404 (2020).
Article CAS PubMed Google Scholar
Salem, J. E. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 19, 1579–1589 (2018).
Article CAS PubMed PubMed Central Google Scholar
Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016). This study was the first to identify fulminant myocarditis as an irAE associated with ICI therapy.
Article PubMed PubMed Central Google Scholar
Gougis, P. et al. Clinical spectrum and evolution of immune-checkpoint inhibitors toxicities over a decade — a worldwide perspective. eClinicalMedicine 70, 102536 (2024).
Article PubMed PubMed Central Google Scholar
Zadok, O. I. B., Levi, A., Divakaran, S. & Nohria, A. Severe vs nonsevere immune checkpoint inhibitor-induced myocarditis. JACC CardioOncol. 5, 732–744 (2023).
Lehmann, L. H. et al. Cardiomuscular biomarkers in the diagnosis and prognostication of immune checkpoint inhibitor myocarditis. Circulation 148, 473–486 (2023).
Article CAS PubMed Google Scholar
Fenioux, C. et al. Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis. Nat. Med. 29, 3100–3110 (2023). This study identified an increased risk of ICI-myocarditis in patients with TETs and patients with larger, more active, thymic remnants both treated with ICIs.
Article CAS PubMed Google Scholar
Lehmann, L. H. et al. Clinical strategy for the diagnosis and treatment of immune checkpoint inhibitor-associated myocarditis: a narrative review. JAMA Cardiol. 6, 1329–1337 (2021).
Salem, J. E. et al. Abatacept/ruxolitinib and screening for concomitant respiratory muscle failure to mitigate fatality of immune-checkpoint inhibitor myocarditis. Cancer Discov. 13, 1100–1115 (2023). This case series describes the treatment strategy for ICI-myocarditis, which comprises abatacept (CTLA4–immunoglobulin fusion protein) and ruxolitinib (a JAK1/JAK2 inhibitor), and its efficacy, emphasizing the synergy between the two medications.
Article CAS PubMed Google Scholar
Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).
Article CAS PubMed Google Scholar
Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).
Article CAS PubMed Google Scholar
Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).
Article CAS PubMed PubMed Central Google Scholar
Bluestone, J. A. & Anderson, M. Tolerance in the age of immunotherapy. N. Engl. J. Med. 383, 1156–1166 (2020).
Article CAS PubMed PubMed Central Google Scholar
Korman, A. J., Garrett-Thomson, S. C. & Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 21, 509–528 (2022).
Article CAS PubMed Google Scholar
Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).
Article CAS PubMed Google Scholar
Aggarwal, V., Workman, C. J. & Vignali, D. A. A. LAG-3 as the third checkpoint inhibitor. Nat. Immunol. 24, 1415–1422 (2023).
Article CAS PubMed PubMed Central Google Scholar
Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).
Article CAS PubMed Google Scholar
Zhang, Q. et al. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci. Immunol. 2, eaah4569 (2017).
Article PubMed PubMed Central Google Scholar
Lv, H. et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Invest. 121, 1561–1573 (2011). This study was the first to demonstrate the failure of central tolerance in eliminating T cells that recognize cardiac antigens such as MYHCA and how this directs cardiac autoimmunity.
Article CAS PubMed PubMed Central Google Scholar
Abramson, J. & Goldfarb, Y. AIRE: from promiscuous molecular partnerships to promiscuous gene expression. Eur. J. Immunol. 46, 22–33 (2016).
Article CAS PubMed Google Scholar
Pummerer, C. L. et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J. Clin. Invest. 97, 2057–2062 (1996).
Article CAS PubMed PubMed Central Google Scholar
Neu, N. et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 139, 3630–3636 (1987).
Article CAS PubMed Google Scholar
Nindl, V. et al. Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur. J. Immunol. 42, 2311–2321 (2012).
Article CAS PubMed Google Scholar
Grabie, N., Lichtman, A. H. & Padera, R. T cell checkpoint regulators in the heart. Cardiovasc. Res. 115, 869–877 (2019).
Article CAS PubMed PubMed Central Google Scholar
Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003).
Article CAS PubMed Google Scholar
Grabie, N. et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation 116, 2062–2071 (2007).
Article CAS PubMed Google Scholar
Choudhary, A. et al. PD-L1 (programmed death ligand 1) as a marker of acute cellular rejection after heart transplantation. Circ. Heart Fail. 14, e008563 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wu, Y. S., Zhu, B., Luo, A. L., Yang, L. & Yang, C. The role of cardiokines in heart diseases: beneficial or detrimental? Biomed. Res. Int. 2018, 8207058 (2018).
PubMed PubMed Central Google Scholar
Zhang, Y. et al. Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis. Sci. Transl. Med. 14, eabo1981 (2022).
Article CAS PubMed PubMed Central Google Scholar
Won, T. et al. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep. 41, 111611 (2022).
Comments (0)