Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart

Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Johnson, D. B. et al. Immune checkpoint inhibitor toxicities: systems-based approaches to improve patient care and research. Lancet Oncol. 21, e398–e404 (2020).

Article  CAS  PubMed  Google Scholar 

Salem, J. E. et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 19, 1579–1589 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016). This study was the first to identify fulminant myocarditis as an irAE associated with ICI therapy.

Article  PubMed  PubMed Central  Google Scholar 

Gougis, P. et al. Clinical spectrum and evolution of immune-checkpoint inhibitors toxicities over a decade — a worldwide perspective. eClinicalMedicine 70, 102536 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Zadok, O. I. B., Levi, A., Divakaran, S. & Nohria, A. Severe vs nonsevere immune checkpoint inhibitor-induced myocarditis. JACC CardioOncol. 5, 732–744 (2023).

Article  Google Scholar 

Lehmann, L. H. et al. Cardiomuscular biomarkers in the diagnosis and prognostication of immune checkpoint inhibitor myocarditis. Circulation 148, 473–486 (2023).

Article  CAS  PubMed  Google Scholar 

Fenioux, C. et al. Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis. Nat. Med. 29, 3100–3110 (2023). This study identified an increased risk of ICI-myocarditis in patients with TETs and patients with larger, more active, thymic remnants both treated with ICIs.

Article  CAS  PubMed  Google Scholar 

Lehmann, L. H. et al. Clinical strategy for the diagnosis and treatment of immune checkpoint inhibitor-associated myocarditis: a narrative review. JAMA Cardiol. 6, 1329–1337 (2021).

Article  PubMed  Google Scholar 

Salem, J. E. et al. Abatacept/ruxolitinib and screening for concomitant respiratory muscle failure to mitigate fatality of immune-checkpoint inhibitor myocarditis. Cancer Discov. 13, 1100–1115 (2023). This case series describes the treatment strategy for ICI-myocarditis, which comprises abatacept (CTLA4–immunoglobulin fusion protein) and ruxolitinib (a JAK1/JAK2 inhibitor), and its efficacy, emphasizing the synergy between the two medications.

Article  CAS  PubMed  Google Scholar 

Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).

Article  CAS  PubMed  Google Scholar 

Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

Article  CAS  PubMed  Google Scholar 

Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bluestone, J. A. & Anderson, M. Tolerance in the age of immunotherapy. N. Engl. J. Med. 383, 1156–1166 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korman, A. J., Garrett-Thomson, S. C. & Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 21, 509–528 (2022).

Article  CAS  PubMed  Google Scholar 

Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

Article  CAS  PubMed  Google Scholar 

Aggarwal, V., Workman, C. J. & Vignali, D. A. A. LAG-3 as the third checkpoint inhibitor. Nat. Immunol. 24, 1415–1422 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

Article  CAS  PubMed  Google Scholar 

Zhang, Q. et al. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci. Immunol. 2, eaah4569 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lv, H. et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Invest. 121, 1561–1573 (2011). This study was the first to demonstrate the failure of central tolerance in eliminating T cells that recognize cardiac antigens such as MYHCA and how this directs cardiac autoimmunity.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abramson, J. & Goldfarb, Y. AIRE: from promiscuous molecular partnerships to promiscuous gene expression. Eur. J. Immunol. 46, 22–33 (2016).

Article  CAS  PubMed  Google Scholar 

Pummerer, C. L. et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J. Clin. Invest. 97, 2057–2062 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neu, N. et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 139, 3630–3636 (1987).

Article  CAS  PubMed  Google Scholar 

Nindl, V. et al. Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur. J. Immunol. 42, 2311–2321 (2012).

Article  CAS  PubMed  Google Scholar 

Grabie, N., Lichtman, A. H. & Padera, R. T cell checkpoint regulators in the heart. Cardiovasc. Res. 115, 869–877 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003).

Article  CAS  PubMed  Google Scholar 

Grabie, N. et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation 116, 2062–2071 (2007).

Article  CAS  PubMed  Google Scholar 

Choudhary, A. et al. PD-L1 (programmed death ligand 1) as a marker of acute cellular rejection after heart transplantation. Circ. Heart Fail. 14, e008563 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, Y. S., Zhu, B., Luo, A. L., Yang, L. & Yang, C. The role of cardiokines in heart diseases: beneficial or detrimental? Biomed. Res. Int. 2018, 8207058 (2018).

PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis. Sci. Transl. Med. 14, eabo1981 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Won, T. et al. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep. 41, 111611 (2022).

Article 

Comments (0)

No login
gif