Unmasking GAN-Generated Faces with Optimal Deep Learning and Cognitive Computing-Based Cutting-Edge Detection System

Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA. 2017;21–26:1125–34.

Google Scholar 

Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy. 2017;22–29:2223–32.

Google Scholar 

Zhang H, Goodfellow I, Metaxas D, Odena A. Self-attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA. 2019;10–15:7354–63.

Google Scholar 

Mo H, Chen B, Luo W. Fake faces identification via convolutional neural network. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, Innsbruck, Austria. 2018:43–47.

Cozzolino D, Thies J, Rössler A, Riess C, Nießner M, Verdoliva L. Forensictransfer: Weakly-supervised domain adaptation for forgery detection. arXiv 2018. arXiv:1812.02510.

Quan W, Wang K, Yan DM, Zhang X. Distinguishing between natural and computer-generated images using convolutional neural networks. IEEE Trans Inf Forensics Secur. 2018;13:2772–87.

Article  Google Scholar 

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair, S, Courville A, Bengio Y. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada 2014;2:2672–2680

Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015. arXiv:1511.06434.

Brock A, Donahue J, Simonyan K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018. arXiv:1809.11096.

Daras G, Odena A, Zhang H, Dimakis AG. Your local GAN: Designing two-dimensional local attention mechanisms for generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA. 2020;13:14531–9.

Google Scholar 

Xue Z, Jiang X, Liu Q, Wei Z. Global–local facial fusion based GAN generated fake face detection. Sensors. 2023;23(2): 616.

Article  Google Scholar 

Zhang L. GAN-generated face detection by color feature and ResNet. InInternational Conference on Algorithms, High-Performance Computing, and Artificial Intelligence (AHPCAI 2023). 2023;12941:1056–9 SPIE.

Google Scholar 

Fu Y, Sun T, Jiang X, Xu K, He P.  Robust GAN-face detection based on dual-channel CNN network. In 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) 2019:1–5. IEEE.

Guo H, Hu S, Wang X, Chang MC, Lyu S. Robust attentive deep neural network for detecting GAN-generated faces. IEEE Access. 2022;10:32574–83.

Article  Google Scholar 

Lee S, Tariq S, Shin Y, Woo SS. Detecting handcrafted facial image manipulations and GAN-generated facial images using Shallow-FakeFaceNet. Appl Soft Comput. 2021;105: 107256.

Article  Google Scholar 

Fu T, Xia M, Yang G. Detecting GAN-generated face images via hybrid texture and sensor noise-based features. Multimedia Tools and Applications. 2022;81(18):26345–59.

Article  Google Scholar 

Revi KR, Isaac M.M, Antony R, Wilscy M. GAN-generated fake face image detection using opponent color local binary pattern and deep learning technique. In 2022 International Conference on Connected Systems & Intelligence (CSI). 2022:1–7. IEEE.

Barni M, Kallas K, Nowroozi E, Tondi B. CNN detection of GAN-generated face images based on cross-band co-occurrences analysis. In 2020 IEEE international workshop on information forensics and security (WIFS). 2020:1–6. IEEE.

Sree Vidya B, Chandra E. Triangular fuzzy membership-contrast limited adaptive histogram equalization (TFM-CLAHE) for enhancement of multimodal biometric images. Wireless Pers Commun. 2019;106:651–80.

Article  Google Scholar 

Manisha N, Jagadeeshwar M. BC-driven IoT-based food quality traceability system for dairy products using deep learning model. High-Confidence Computing. 2023;3(3): 100121.

Article  Google Scholar 

Zhang J, Xue X, Li D, Yan J, Cheng P. Optimization of energy storage allocation in wind energy storage combined system based on improved sand cat swarm optimization algorithm. Processes. 2023;11(12): 3274.

Article  Google Scholar 

An J, Cho S. Variational autoencoder-based anomaly detection using reconstruction probability. Special lecture on IE. 2015;2(1):1–18.

Google Scholar 

Li S, Dutta V, He X, Matsumaru T. Deep learning based one-class detection system for fake faces generated by GAN network. Sensors. 2022;22(20): 7767.

Article  Google Scholar 

Comments (0)

No login
gif