Spillantini, M. G. & Goedert, M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428–433 (1998).
Article CAS PubMed Google Scholar
Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007).
Article CAS PubMed Google Scholar
Higashi, S. et al. Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res. 1184, 284–294 (2007).
Article CAS PubMed Google Scholar
Robinson, J. L. et al. The development and convergence of co-pathologies in Alzheimer’s disease. Brain 144, 953–962 (2021).
Article PubMed PubMed Central Google Scholar
Schweighauser, M. et al. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 605, 310–314 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chang, A. et al. Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 185, 1346–1355 e1315 (2022).
Article CAS PubMed PubMed Central Google Scholar
Jiang, Y. X. et al. Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43. Nature 605, 304–309 (2022).
Article CAS PubMed PubMed Central Google Scholar
Xu, Y., Zhang, S. & Zheng, H. The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau). Autophagy 15, 583–598 (2019).
Article CAS PubMed Google Scholar
Ramesh Babu, J. et al. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J. Neurochem. 106, 107–120 (2008).
Article CAS PubMed Google Scholar
Ma, X. et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell 185, 1325–1345 e1322 (2022).
Article CAS PubMed Google Scholar
Darwich, N. F. et al. Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science 370, eaay8826 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Z. Y. et al. TRIM11 protects against tauopathies and is down-regulated in Alzheimera’s disease. Science 381, eadd6696 (2023).
Article CAS PubMed Google Scholar
Lovestam, S. et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife 11, e76494 (2022).
Article CAS PubMed PubMed Central Google Scholar
Boyko, S., Surewicz, K. & Surewicz, W. K. Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase separation. Proc. Natl Acad. Sci. USA 117, 31882–31890 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rai, S. K., Savastano, A., Singh, P., Mukhopadhyay, S. & Zweckstetter, M. Liquid–liquid phase separation of tau: from molecular biophysics to physiology and disease. Protein Sci. 30, 1294–1314 (2021).
Article CAS PubMed PubMed Central Google Scholar
Babinchak, W. M. & Surewicz, W. K. Liquid–liquid phase separation and its mechanistic role in pathological protein aggregation. J. Mol. Biol. 432, 1910–1925 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wegmann, S. et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).
Article PubMed PubMed Central Google Scholar
Spratt, D. E., Walden, H. & Shaw, G. S. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458, 421–437 (2014).
Article CAS PubMed Google Scholar
Santens, P. et al. RNF216 mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology 84, 1760–1766 (2015).
Article CAS PubMed Google Scholar
Margolin, D. H. et al. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N. Engl. J. Med. 368, 1992–2003 (2013).
Article CAS PubMed PubMed Central Google Scholar
Alqwaifly, M. & Bohlega, S. Ataxia and hypogonadotropic hypogonadism with intrafamilial variability caused by RNF216 mutation. Neurol. Int. 8, 6444 (2016).
Article PubMed PubMed Central Google Scholar
Calandra, C. R. et al. Gordon Holmes syndrome caused by RNF216 novel mutation in 2 Argentinean siblings. Mov. Disord. Clin. Pract. 6, 259–262 (2019).
Article PubMed PubMed Central Google Scholar
Chen, K. L. et al. Whole-exome sequencing identified a novel mutation in RNF216 in a family with Gordon Holmes syndrome. J. Mol. Neurosci. 72, 691–694 (2022).
Article CAS PubMed Google Scholar
Cotton, T. R. et al. Structural basis of K63-ubiquitin chain formation by the Gordon-Holmes syndrome RBR E3 ubiquitin ligase RNF216. Mol. Cell 82, 598–615 e598 (2022).
Article CAS PubMed Google Scholar
Mabb, A. M. et al. Triad3A regulates synaptic strength by ubiquitination of Arc. Neuron 82, 1299–1316 (2014).
Article CAS PubMed PubMed Central Google Scholar
Schwintzer, L., Aguado Roca, E. & Broemer, M. TRIAD3/RNF216 E3 ligase specifically synthesises K63-linked ubiquitin chains and is inactivated by mutations associated with Gordon Holmes syndrome. Cell Death Discov. 5, 75 (2019).
Article PubMed PubMed Central Google Scholar
Seenivasan, R. et al. Mechanism and chain specificity of RNF216/TRIAD3, the ubiquitin ligase mutated in Gordon Holmes syndrome. Hum. Mol. Genet. 28, 2862–2873 (2019).
Article CAS PubMed Google Scholar
Marin, I. RBR ubiquitin ligases: diversification and streamlining in animal lineages. J. Mol. Evol. 69, 54–64 (2009).
Article CAS PubMed Google Scholar
van Wijk, S. J. & Timmers, H. T. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24, 981–993 (2010).
Swatek, K. N. et al. Insights into ubiquitin chain architecture using Ub-clipping. Nature 572, 533–537 (2019).
Comments (0)