The autophagy adaptor TRIAD3A promotes tau fibrillation by nested phase separation

Spillantini, M. G. & Goedert, M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428–433 (1998).

Article  CAS  PubMed  Google Scholar 

Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007).

Article  CAS  PubMed  Google Scholar 

Higashi, S. et al. Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res. 1184, 284–294 (2007).

Article  CAS  PubMed  Google Scholar 

Robinson, J. L. et al. The development and convergence of co-pathologies in Alzheimer’s disease. Brain 144, 953–962 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Schweighauser, M. et al. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 605, 310–314 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, A. et al. Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 185, 1346–1355 e1315 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, Y. X. et al. Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43. Nature 605, 304–309 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y., Zhang, S. & Zheng, H. The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau). Autophagy 15, 583–598 (2019).

Article  CAS  PubMed  Google Scholar 

Ramesh Babu, J. et al. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J. Neurochem. 106, 107–120 (2008).

Article  CAS  PubMed  Google Scholar 

Ma, X. et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell 185, 1325–1345 e1322 (2022).

Article  CAS  PubMed  Google Scholar 

Darwich, N. F. et al. Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science 370, eaay8826 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Z. Y. et al. TRIM11 protects against tauopathies and is down-regulated in Alzheimera’s disease. Science 381, eadd6696 (2023).

Article  CAS  PubMed  Google Scholar 

Lovestam, S. et al. Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife 11, e76494 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyko, S., Surewicz, K. & Surewicz, W. K. Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase separation. Proc. Natl Acad. Sci. USA 117, 31882–31890 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rai, S. K., Savastano, A., Singh, P., Mukhopadhyay, S. & Zweckstetter, M. Liquid–liquid phase separation of tau: from molecular biophysics to physiology and disease. Protein Sci. 30, 1294–1314 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babinchak, W. M. & Surewicz, W. K. Liquid–liquid phase separation and its mechanistic role in pathological protein aggregation. J. Mol. Biol. 432, 1910–1925 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wegmann, S. et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 37, e98049 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Spratt, D. E., Walden, H. & Shaw, G. S. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458, 421–437 (2014).

Article  CAS  PubMed  Google Scholar 

Santens, P. et al. RNF216 mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology 84, 1760–1766 (2015).

Article  CAS  PubMed  Google Scholar 

Margolin, D. H. et al. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N. Engl. J. Med. 368, 1992–2003 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alqwaifly, M. & Bohlega, S. Ataxia and hypogonadotropic hypogonadism with intrafamilial variability caused by RNF216 mutation. Neurol. Int. 8, 6444 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Calandra, C. R. et al. Gordon Holmes syndrome caused by RNF216 novel mutation in 2 Argentinean siblings. Mov. Disord. Clin. Pract. 6, 259–262 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Chen, K. L. et al. Whole-exome sequencing identified a novel mutation in RNF216 in a family with Gordon Holmes syndrome. J. Mol. Neurosci. 72, 691–694 (2022).

Article  CAS  PubMed  Google Scholar 

Cotton, T. R. et al. Structural basis of K63-ubiquitin chain formation by the Gordon-Holmes syndrome RBR E3 ubiquitin ligase RNF216. Mol. Cell 82, 598–615 e598 (2022).

Article  CAS  PubMed  Google Scholar 

Mabb, A. M. et al. Triad3A regulates synaptic strength by ubiquitination of Arc. Neuron 82, 1299–1316 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwintzer, L., Aguado Roca, E. & Broemer, M. TRIAD3/RNF216 E3 ligase specifically synthesises K63-linked ubiquitin chains and is inactivated by mutations associated with Gordon Holmes syndrome. Cell Death Discov. 5, 75 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Seenivasan, R. et al. Mechanism and chain specificity of RNF216/TRIAD3, the ubiquitin ligase mutated in Gordon Holmes syndrome. Hum. Mol. Genet. 28, 2862–2873 (2019).

Article  CAS  PubMed  Google Scholar 

Marin, I. RBR ubiquitin ligases: diversification and streamlining in animal lineages. J. Mol. Evol. 69, 54–64 (2009).

Article  CAS  PubMed  Google Scholar 

van Wijk, S. J. & Timmers, H. T. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24, 981–993 (2010).

Article  PubMed  Google Scholar 

Swatek, K. N. et al. Insights into ubiquitin chain architecture using Ub-clipping. Nature 572, 533–537 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif