Christensen MD, Hulsebosch CE (1997) Chronic central pain after spinal cord injury. J Neurotrauma 14:517–537. https://doi.org/10.1089/neu.1997.14.517
Article CAS PubMed Google Scholar
Warms CA, Turner JA, Marshall HM, Cardenas DD (2002) Treatments for chronic pain associated with spinal cord injuries: many are tried, few are helpful. Clin J Pain 18:154–163. https://doi.org/10.1097/00002508-200205000-00004
Hulsebosch CE, Hains BC, Crown ED, Carlton SM (2009) Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 60:202–213. https://doi.org/10.1016/j.brainresrev.2008.12.010
Article CAS PubMed Google Scholar
Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824
Article CAS PubMed Google Scholar
Claycomb KI, Johnson KM, Winokur PN, Sacino AV, Crocker SJ (2013) Astrocyte regulation of CNS inflammation and remyelination. Brain Sci 3:1109–1127. https://doi.org/10.3390/brainsci3031109
Article CAS PubMed PubMed Central Google Scholar
Siracusa R, Fusco R, Cuzzocrea S (2019) Astrocytes: role and functions in brain pathologies. Front Pharmacol 10:1114. https://doi.org/10.3389/fphar.2019.01114
Article CAS PubMed PubMed Central Google Scholar
Dossi E, Vasile F, Rouach N (2018) Human astrocytes in the diseased brain. Brain Res Bull 136:139–156. https://doi.org/10.1016/j.brainresbull.2017.02.001
Article CAS PubMed PubMed Central Google Scholar
Ji RR, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154(Suppl 1):S10–S28. https://doi.org/10.1016/j.pain.2013.06.022
Article PubMed PubMed Central Google Scholar
Li T, Chen X, Zhang C, Zhang Y, Yao W (2019) An update on reactive astrocytes in chronic pain. J Neuroinflammation 16:140. https://doi.org/10.1186/s12974-019-1524-2
Article PubMed PubMed Central Google Scholar
Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H et al (2011) JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain 134:1127–1139. https://doi.org/10.1093/brain/awr025
Article PubMed PubMed Central Google Scholar
Lee JY, Choi DC, Oh TH, Yune TY (2013) Analgesic effect of acupuncture is mediated via inhibition of JNK activation in astrocytes after spinal cord injury. PLoS ONE 8:e73948. https://doi.org/10.1371/journal.pone.0073948
Article CAS PubMed PubMed Central Google Scholar
Lee JY, Choi HY, Ju BG, Yune TY (2018) Estrogen alleviates neuropathic pain induced after spinal cord injury by inhibiting microglia and astrocyte activation. Biochim Biophys Acta Mol Basis Dis 1864:2472–2480. https://doi.org/10.1016/j.bbadis.2018.04.006
Article CAS PubMed Google Scholar
Lee JY, Choi HY, Park CS, Kim DH, Yune TY (2021) Total saponin extract, ginsenoside Rb1, and compound K alleviate peripheral and central neuropathic pain through estrogen receptors on rats. Phytother Res 35:2119–2132. https://doi.org/10.1002/ptr.6960
Article CAS PubMed Google Scholar
Lee JY, Kam YL, Oh J, Kim DH, Choi JS, Choi HY et al (2017) HYP-17, a novel voltage-gated sodium channel blocker, relieves inflammatory and neuropathic pain in rats. Pharmacol Biochem Behav 153:116–129. https://doi.org/10.1016/j.pbb.2016.12.013
Article CAS PubMed Google Scholar
Cui J, He W, Yi B, Zhao H, Lu K, Ruan H et al (2014) mTOR pathway is involved in ADP-evoked astrocyte activation and ATP release in the spinal dorsal horn in a rat neuropathic pain model. Neuroscience 275:395–403. https://doi.org/10.1016/j.neuroscience.2014.06.030
Article CAS PubMed Google Scholar
Chen Y, Li Y, Li C, Zhu D, Cheng O, Cui J (2022) Dexmedetomidine alleviates pain in MPTP-treated mice by activating the AMPK/mTOR/NF-kappaB pathways in astrocytes. Neurosci Lett 791:136933. https://doi.org/10.1016/j.neulet.2022.136933
Article CAS PubMed Google Scholar
Wang X, Li X, Huang B, Ma S (2016) Blocking mammalian target of rapamycin (mTOR) improves neuropathic pain evoked by spinal cord injury. Transl Neurosci 7:50–55. https://doi.org/10.1515/tnsci-2016-0008
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Zhao Y, Ma X, Li J, Hou J, Lv X (2019) Beneficial effects of electroacupuncture on neuropathic pain evoked by spinal cord injury and involvement of PI3K-mTOR mechanisms. Biol Res Nurs 21:5–13. https://doi.org/10.1177/1099800418804896
Article CAS PubMed Google Scholar
Gees M, Colsoul B, Nilius B (2010) The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2:a003962. https://doi.org/10.1101/cshperspect.a003962
Article CAS PubMed PubMed Central Google Scholar
Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12:218. https://doi.org/10.1186/gb-2011-12-3-218
Article CAS PubMed PubMed Central Google Scholar
Aydin B, Naziroglu M (2022) Involvement of TRPM7 channel on the induction of diabetic neuropathic pain in mice: protective role of selenium and curcumin. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03518-7
Gualdani R, Gailly P, Yuan JH, Yerna X, Di Stefano G, Truini A et al (2022) A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons. Proc Natl Acad Sci U S A 119:e2119630119. https://doi.org/10.1073/pnas.2119630119
Article CAS PubMed PubMed Central Google Scholar
Zeng Z, Leng T, Feng X, Sun H, Inoue K, Zhu L et al (2015) Silencing TRPM7 in mouse cortical astrocytes impairs cell proliferation and migration via ERK and JNK signaling pathways. PLoS ONE 10:e0119912. https://doi.org/10.1371/journal.pone.0119912
Article CAS PubMed PubMed Central Google Scholar
Kamermans A, Planting KE, Jalink K, van Horssen J, de Vries HE (2019) Reactive astrocytes in multiple sclerosis impair neuronal outgrowth through TRPM7-mediated chondroitin sulfate proteoglycan production. Glia 67:68–77. https://doi.org/10.1002/glia.23526
Kim W, Park S, Kwon W, Kim D, Park JK, Han JE et al (2022) Suppression of transient receptor potential melastatin 7 regulates pluripotency, proliferation, and differentiation of mouse embryonic stem cells via mechanistic target of rapamycin-extracellular signal-regulated kinase activation. J Cell Biochem 123:547–567. https://doi.org/10.1002/jcb.30199
Article CAS PubMed Google Scholar
Sahni J, Scharenberg AM (2008) TRPM7 ion channels are required for sustained phosphoinositide 3-kinase signaling in lymphocytes. Cell Metab 8:84–93. https://doi.org/10.1016/j.cmet.2008.06.002
Article CAS PubMed PubMed Central Google Scholar
Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. https://doi.org/10.1016/0304-3959(83)90201-4
Comments (0)