Guo XW, Lei RE, Zhou QN, Zhang G, Hu BL, Liang YX. Tumor microenvironment characterization in colorectal cancer to identify prognostic and immunotherapy genes signature. BMC Cancer. 2023;23(1):773. Available from: https://doi.org/10.1186/s12885-023-11277-4.
Suzuki T, Imai J, Yamada T, Ishigaki Y, Kaneko K, Uno K et al. Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic beta-cells: potential involvement of the PLC-IP3-dependent pathway. Diabetes. 2011;60(2):537 – 47. Available from: https://doi.org/10.2337/db10-0796.
Yoon S, Woo SU, Kang JH, Kim K, Shin HJ, Gwak HS et al. NF-kappaB and STAT3 cooperatively induce IL6 in starved cancer cells. Oncogene. 2012;31(29):3467-81. Available from: https://doi.org/10.1038/onc.2011.517.
Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11 – 9. Available from: https://doi.org/10.1016/j.cytogfr.2009.11.005.
Komoda H, Tanaka Y, Honda M, Matsuo Y, Hazama K, Takao T. Interleukin-6 levels in colorectal cancer tissues. World J Surg. 1998;22(8):895-8. Available from: https://doi.org/10.1007/s002689900489.
Galizia G, Orditura M, Romano C, Lieto E, Castellano P, Pelosio L et al. Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin Immunol. 2002;102(2):169 – 78. Available from: https://doi.org/10.1006/clim.2001.5163.
Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S et al. High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology. 1996;110(2):375 – 82. Available from: https://doi.org/10.1053/gast.1996.v110.pm8566583.
Tu Y, Han J, Dong Q, Chai R, Li N, Lu Q et al. TGF-beta2 is a Prognostic Biomarker Correlated with Immune Cell Infiltration in Colorectal Cancer: A STROBE-compliant article. Medicine (Baltimore). 2020;99(46):e23024. Available from: https://doi.org/10.1097/MD.0000000000023024.
Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999;18(20):3098 – 103. Available from: https://doi.org/10.1038/sj.onc.1202642.
Zhang B, Halder SK, Kashikar ND, Cho YJ, Datta A, Gorden DL et al. Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology. 2010;138(3):969 – 80 e1-3. Available from: https://doi.org/10.1053/j.gastro.2009.11.004.
Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261(7):3068–74.
Article CAS PubMed Google Scholar
Hanna AD, Lam A, Tham S, Dulhunty AF, Beard NA. Adverse effects of doxorubicin and its metabolic product on cardiac RyR2 and SERCA2A. Mol Pharmacol. 2014;86(4):438 – 49. Available from: https://doi.org/10.1124/mol.114.093849.
Minotti G, Recalcati S, Mordente A, Liberi G, Calafiore AM, Mancuso C et al. The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J. 1998;12(7):541 – 52. Available from: https://doi.org/10.1096/fasebj.12.7.541.
Kiyomiya K, Matsuo S, Kurebe M. Mechanism of specific nuclear transport of adriamycin: the mode of nuclear translocation of adriamycin-proteasome complex. Cancer Res. 2001;61(6):2467–71.
Zu Y, Yang Z, Tang S, Han Y, Ma J. Effects of P-glycoprotein and its inhibitors on apoptosis in K562 cells. Molecules. 2014;19(9):13061-75. Available from: https://doi.org/10.3390/molecules190913061.
Kawano M, Tanaka K, Itonaga I, Iwasaki T, Miyazaki M, Ikeda S et al. Dendritic cells combined with doxorubicin induces immunogenic cell death and exhibits antitumor effects for osteosarcoma. Oncol Lett. 2016;11(3):2169-75. Available from: https://doi.org/10.3892/ol.2016.4175.
Sritharan S, Sivalingam N. Doxorubicin-induced chemoresistance in Duke’s type B colon adenocarcinoma cell line is aggravated in the presence of TGF-beta2 through non-apoptotic cell death. Clin Transl Oncol. 2024. Available from: https://doi.org/10.1007/s12094-023-03380-6.
Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9(9):665 – 74. Available from: https://doi.org/10.1038/nrc2714.
Hu F, Song D, Yan Y, Huang C, Shen C, Lan J et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat Commun. 2021;12(1):3651. Available from: https://doi.org/10.1038/s41467-021-23923-1.
Li XY, Liao XF, Wang HB, Zhang J. Doxorubicin resistance induces IL6 activation in the colon cancer cell line LS180. Oncol Lett. 2018;16(5):5923-9. Available from: https://doi.org/10.3892/ol.2018.9360.
Chen Y, Liu J, Lv P, Gao J, Wang M, Wang Y. IL-6 is involved in malignancy and doxorubicin sensitivity of renal carcinoma cells. Cell Adh Migr. 2018;12(1):28–36. Available from: https://doi.org/10.1080/19336918.2017.1307482.
Bent EH, Millan-Barea LR, Zhuang I, Goulet DR, Frose J, Hemann MT. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat Commun. 2021;12(1):6218. Available from: https://doi.org/10.1038/s41467-021-26407-4.
Brunen D, Willems SM, Kellner U, Midgley R, Simon I, Bernards R. TGF-beta: an emerging player in drug resistance. Cell Cycle. 2013;12(18):2960-8. Available from: https://doi.org/10.4161/cc.26034.
Brown JA, Yonekubo Y, Hanson N, Sastre-Perona A, Basin A, Rytlewski JA et al. TGF-beta-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma. Cell Stem Cell. 2017;21(5):650 – 64 e8. Available from: https://doi.org/10.1016/j.stem.2017.10.001.
Ghallab AM, Eissa RA, El Tayebi HM. CXCR2 Small-Molecule Antagonist Combats Chemoresistance and Enhances Immunotherapy in Triple-Negative Breast Cancer. Front Pharmacol. 2022;13:862125. Available from: https://doi.org/10.3389/fphar.2022.862125.
Wo L, Zhang B, You X, Hu Y, Gu Z, Zhang M et al. Up-regulation of LncRNA UCA1 by TGF-beta promotes doxorubicin resistance in breast cancer cells. Immunopharmacol Immunotoxicol. 2022;44(4):492-9. Available from: https://doi.org/10.1080/08923973.2022.2054428.
Oida T, Weiner HL. Overexpression of TGF-ss 1 gene induces cell surface localized glucose-regulated protein 78-associated latency-associated peptide/TGF-ss. J Immunol. 2010;185(6):3529-35. Available from: https://doi.org/10.4049/jimmunol.0904121.
Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN Jr., Van Veldhuizen PJ Jr. et al. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin Cancer Res. 2010;16(11):3028-34. Available from: https://doi.org/10.1158/1078-0432.CCR-09-3122.
Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014;9(3):e90353. Available from: https://doi.org/10.1371/journal.pone.0090353.
Tang YA, Chen YF, Bao Y, Mahara S, Yatim S, Oguz G et al. Hypoxic tumor microenvironment activates GLI2 via HIF-1alpha and TGF-beta2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci U S A. 2018;115(26):E5990-E9. Available from: https://doi.org/10.1073/pnas.1801348115.
Comments (0)