Theranostic nanocarrier for acyclovir: tailored SPIONs with MR contrast potential

Abutalib N, Karnati SR, Oldham D, Zhang L, Fini E (2017) Surface modification of silica fume with amine groups to reduce agglomeration and improve asphalt resistance to oxidation. Res Rev J Mater Sci. https://doi.org/10.4172/2321-6212.1000159

Article  Google Scholar 

Ali A, Zafar H, ZiaulHaqPhullAliHussain MIARJSA (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benedetti S, Catalani S, Palma F, Canonico B, Luchetti F, Galati R, Papa S, Battistelli S (2018) Acyclovir induces cell cycle perturbation and apoptosis in Jurkat leukemia cells, and enhances chemotherapeutic drug cytotoxicity. Life Sci 215:80–85

Article  CAS  PubMed  Google Scholar 

Bushell M, Beauchemin S, Kunc F et al (2020) Characterization of commercial metal oxide nanomaterials: crystalline phase, particle size and specific surface area. Nanomaterials 10:1812

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen F, Ehlerding EB, Cai W (2014) Theranostic nanoparticles. J Nucl Med 55:1919–1922

Article  CAS  PubMed  Google Scholar 

Coates J (2006) Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837

Google Scholar 

Cornell RM, Schwertmann U (2003) Surface chemistry and colloidal stability. The Iron Oxides 221–252

De Clercq E (2019) Fifty years in search of selective antiviral drugs. J Med Chem 62:7322–7339

Article  PubMed  Google Scholar 

Feng B, Hong RY, Wang LS, Guo L, Li HZ, Ding J, Zheng Y, Wei DG (2008) Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A Physicochem Eng Asp 328:52–59

Article  CAS  Google Scholar 

Fujita S, Nakazawa M, Hagiwara A et al (2019) Estimation of gadolinium-based contrast agent concentration using quantitative synthetic MRI and its application to brain metastases: a feasibility study. Magn Reson Med Sci 18:260–264

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gavard J, Hanini S, Kacem C, Ammar JG (2011) Evaluation of iron oxide nanoparticle biocompatibility. Int J Nanomed. https://doi.org/10.2147/IJN.S17574

Article  Google Scholar 

Golestannejad Z, Khozeimeh F, Mehrasa M, Mirzaeei S, Sarfaraz D (2022) A novel drug delivery system using acyclovir nanofiber patch for topical treatment of recurrent herpes labialis: a randomized clinical trial. Clin Exp Dent Res 8:184–190. https://doi.org/10.1002/cre2.512

Article  PubMed  Google Scholar 

Hermanson GT (2013) Chapter 15 - immobilization of ligands on chromatography supports. In: Hermanson GT (ed) Bioconjugate Techniques, 3rd edn. Academic Press, Boston, Third Edition, pp 589–740

Chapter  Google Scholar 

Hoff RE (2019) Iron oxide nanoparticle surface modification: synthesis and characterization. Temple University, Philadelphia

Google Scholar 

Jeelani S, Jagat Reddy R, Maheswaran T, Asokan G, Dany A, Anand B (2014) Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci 6:6

Article  Google Scholar 

Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490

Article  CAS  Google Scholar 

Khanh Luong D, Khanh D (2016) Dendrimer-coated iron oxide theranostic nanoparticles for cancer imaging and therapy. Wayne State University, Detroit

Google Scholar 

Lesiak B, Rangam N, Jiricek P, Gordeev I, Tóth J, Kövér L, Mohai M, Borowicz P (2019) Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules. Front Chem. https://doi.org/10.3389/fchem.2019.00642

Article  PubMed  PubMed Central  Google Scholar 

Liu T, Bai R, Zhou H, Wang R, Liu J, Zhao Y, Chen C (2020) The effect of size and surface ligands of iron oxide nanoparticles on blood compatibility. RSC Adv 10:7559–7569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lotey NKB, Chaughule R, Pednekar S (2022) Dendrimer coated SPIONs: synthesis, characterization and potentials in biomedical applications. Acta Sci Med Sci. https://doi.org/10.31080/ASMS.2022.06.1353

Article  Google Scholar 

Lotey NK, Pednekar S, Chaughule R (2022) Hybrid nanoparticles in biomedical applications. Nanomaterials for cancer detection using imaging techniques and their clinical applications. Springer International Publishing, Cham, pp 365–400. https://doi.org/10.1007/978-3-031-09636-5_13

Chapter  Google Scholar 

Lotey NK, Sabherwal P, Chaughule R, Patkar D, Pednekar S (2024) Ultra – low concentration dendrimer coated SPIONs: synthesis, characterization and potentials in MR imaging. Bionanoscience. https://doi.org/10.1007/s12668-024-01409-w

Article  Google Scholar 

Luna-Vázquez-Gómez R, Arellano-García ME, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Bogdanchikova N, Pestryakov A (2021) Hemolysis of human erythrocytes by argovitTM AgNPs from healthy and diabetic donors: an in vitro study. Materials 14:2792

Article  PubMed  PubMed Central  Google Scholar 

Ma W, Gehret P, Hoff R, Kelly L, Suh W (2019) The Investigation into the toxic potential of iron oxide nanoparticles utilizing rat pheochromocytoma and human neural stem cells. Nanomaterials 9:453

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maniya NH, Patel SR, Murthy ZVP (2015) Development and in vitro evaluation of acyclovir delivery system using nanostructured porous silicon carriers. Chem Eng Res Des 104:551–557

Article  CAS  Google Scholar 

Mascolo M, Pei Y, Ring T (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567

Article  CAS  PubMed  PubMed Central  Google Scholar 

Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

Article  Google Scholar 

Mohapatra S, Pramanik N, Mukherjee S, Ghosh SK, Pramanik P (2007) A simple synthesis of amine-derivatised superparamagnetic iron oxide nanoparticles for bioapplications. J Mater Sci 42:7566–7574

Article  CAS  Google Scholar 

Morillo D, Pérez G, Valiente M (2015) Efficient arsenic(V) and arsenic(III) removal from acidic solutions with Novel forager sponge-loaded superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 453:132–141

Article  CAS  PubMed  Google Scholar 

Nunes P, de Santiago PH, da SilvaEllena OCCPJ (2023) Drug repurposing of the antiviral drug acyclovir: new pharmaceutical salts. Crystals (basel). https://doi.org/10.3390/cryst13050782

Article  Google Scholar 

Oliveira-Silva R, Pinto da Costa J, Vitorino R, Daniel-da-Silva AL (2015) Magnetic chelating nanoprobes for enrichment and selective recovery of metalloproteases from human saliva. J Mater Chem B 3:238–249

Article  CAS  PubMed  Google Scholar 

Özdemir MD, Göktürk D (2019) The concurrent effect of acyclovir and rosemary on glioblastoma cell culture. Cell Mol Biol 65:66–71

Article  PubMed  Google Scholar 

Psarra E, König U, Müller M, Bittrich E, Eichhorn KJ, Welzel PB, Stamm M, Uhlmann P (2017) In situ monitoring of linear RGD-peptide bioconjugation with nanoscale polymer brushes. ACS Omega 2:946–958

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riss TL, Moravec RA, Niles AL (2013) Cell Viability Assays.

Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig Radiol 40:715–724

Article  Google Scholar 

Sosa-Acosta JR, Silva JA, Fernández-Izquierdo L, Díaz-Castañón S, Ortiz M, Zuaznabar-Gardona JC, Díaz-García AM (2018) Iron oxide nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 545:167–178

Article  CAS  Google Scholar 

Tabatabaiee Bafrooee AA, Ahmad Panahi H, Moniri E, Miralinaghi M, Hasani AH (2020) Removal of Hg2+ by carboxyl-terminated hyperbranched poly(amidoamine) dendrimers grafted superparamagnetic nanoparticles as an efficient adsorbent. Environ Sci Pollut Res 27:9547–9567

Article 

Comments (0)

No login
gif