Alzari PM, Berglund H, Berrow N, Blagova E, Busso D, Cambillau C, Campanacci V, Christodoulou E, Eiler S, Fogg M (2006) Implementation of semi-automated cloning and prokaryotic expression screening: the impact of SPINE. Acta Crystallogr D Biol Crystallogr 62:1103–1113. https://doi.org/10.1107/S0907444906029775
Article CAS PubMed Google Scholar
Aslanidis C, De Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074. https://doi.org/10.1093/nar/18.20.6069
Article CAS PubMed PubMed Central Google Scholar
Blommel PG, Martin PA, Wrobel RL, Steffen E, Fox BG (2006) High efficiency single step production of expression plasmids from cDNA clones using the Flexi vector cloning system. Protein Expr Purif 47:562–570. https://doi.org/10.1016/j.pep.2005.11.007
Article CAS PubMed Google Scholar
Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicle. II. A multipurpose cloning system. Gene 2:95–113. https://doi.org/10.1016/0378-1119(77)90000-2
Chen G, Qiu N, Karrer C, Caspers P, Page M (2000) Restriction site-free insertion of PCR products directionally into vectors. Biotechniques 28:498–505. https://doi.org/10.2144/00283st08
Article CAS PubMed Google Scholar
Cho S, Choe D, Lee E, Kim SC, Palsson B, Cho B-K (2018) High-level dCas9 expression induces abnormal cell morphology in Escherichia coli. ACS Synth Biol 7:1085–1094. https://doi.org/10.1021/acssynbio.7b00462
Article CAS PubMed Google Scholar
Choi KR, Lee SY (2016) CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol Adv 34:1180–1209. https://doi.org/10.1016/j.biotechadv.2016.08.002
Article CAS PubMed Google Scholar
Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145. https://doi.org/10.1038/nbt.3011
Article CAS PubMed PubMed Central Google Scholar
Cox RS III, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145. https://doi.org/10.1038/msb4100187
Article CAS PubMed PubMed Central Google Scholar
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645. https://doi.org/10.1073/pnas.120163297
Article CAS PubMed PubMed Central Google Scholar
Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. https://doi.org/10.1126/science.1258096
Article CAS PubMed Google Scholar
Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol 3:109–118. https://doi.org/10.1039/c0ib00070a
Engler C, Marillonnet S (2014) Golden Gate cloning. In: Valla S, Lale R (eds) DNA cloning and assembly methods, vol 1116. Humana Press, Totowa, pp 119–131. https://doi.org/10.1007/978-1-62703-764-8_9
Esposito D, Garvey LA, Chakiath CS (2009) Gateway cloning for protein expression. In: Doyle SA (ed) High throughput protein expression and purification, vol 498. Humana Press. https://doi.org/10.1007/978-1-59745-196-3_3
Ferigolo LF, Vicente MH, Nogueira FT (2022) Brick into the Gateway (BiG): a novel approach for faster cloning combining Golden Gate and Gateway methods. Plasmid 121:102630. https://doi.org/10.1016/j.plasmid.2022.102630
Article CAS PubMed Google Scholar
García-Nafría J, Watson JF, Greger IH (2016) IVA cloning: a single-tube universal cloning system exploiting bacterial in vivo assembly. Sci Rep 6:27459. https://doi.org/10.1038/srep27459
Article CAS PubMed PubMed Central Google Scholar
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/NMETH.1318
Article CAS PubMed Google Scholar
Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795. https://doi.org/10.1101/gr.143000
Article CAS PubMed PubMed Central Google Scholar
Hochkoeppler A (2013) Expanding the landscape of recombinant protein production in Escherichia coli. Biotechnol Lett 35:1971–1981. https://doi.org/10.1007/s10529-013-1396-y
Article CAS PubMed Google Scholar
Huang F, Spangler JR, Huang AY (2017) In vivo cloning of up to 16 kb plasmids in E. coli is as simple as PCR. PLoS One 12:e0183974. https://doi.org/10.1371/journal.pone.0183974
Article CAS PubMed PubMed Central Google Scholar
Jacobus AP, Gross J (2015) Optimal cloning of PCR fragments by homologous recombination in Escherichia coli. PLoS One 10:e0119221 doi.org/10.1371/journal.pone.0119221
Article PubMed PubMed Central Google Scholar
Jajesniak P, Wong TS (2015) QuickStep-cloning: a sequence-independent, ligation-free method for rapid construction of recombinant plasmids. J Biol Eng 9:1–11. https://doi.org/10.1186/s13036-015-0010-3
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239. https://doi.org/10.1038/nbt.2508
Article CAS PubMed PubMed Central Google Scholar
Katzen F (2007) Gateway® recombinational cloning: a biological operating system. Expert Opin Drug Discov 2:571–589. https://doi.org/10.1517/17460441.2.4.571
Article CAS PubMed Google Scholar
Kostylev M, Otwell AE, Richardson RE, Suzuki Y (2015) Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies. PLoS One 10:e0137466. https://doi.org/10.1371/journal.pone.0137466
Article CAS PubMed PubMed Central Google Scholar
Lauritsen I, Porse A, Sommer MO, Nørholm MH (2017) A versatile one-step CRISPR-Cas9 based approach to plasmid-curing. Microb Cell Factories 16:1–10. https://doi.org/10.1186/s12934-017-0748-z
Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y (2011) FastCloning: a highly simplified, purification-free, sequence-and ligation-independent PCR cloning method. BMC Biotechnol 11:1–10. https://doi.org/10.1186/1472-6750-11-92
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5:1. https://doi.org/10.1038/s41392-019-0089-y
Article PubMed PubMed Central Google Scholar
Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256. https://doi.org/10.1038/nmeth1010
Comments (0)