Catabolism of 2-keto-3-deoxy-galactonate and the production of its enantiomers

Alazi E, Khosravi C, Homan TG, du Pré S, Arentshorst M, Di Falco M, Pham TT, Peng M, Aguilar-Pontes MV, Visser J (2017) The pathway intermediate 2-keto-3-deoxy-l-galactonate mediates the induction of genes involved in d-galacturonic acid utilization in Aspergillus niger. FEBS Lett 591(10):1408–1418. https://doi.org/10.1002/1873-3468.12654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Araki C (1956) Structure of the agarose constituent of agar-agar. Bull Chem Soc Jpn 29(4):543–544. https://doi.org/10.1246/bcsj.29.543

Article  CAS  Google Scholar 

Cao M, Jiang T, Li P, Zhang Y, Guo S, Meng W, Lü C, Zhang W, Xu P, Gao C, Ma C (2020) Pyruvate production from whey powder by metabolic engineered Klebsiella oxytoca. J Agric Food Chem 68(51):15275–15283. https://doi.org/10.1021/acs.jafc.0c06724

Article  CAS  PubMed  Google Scholar 

Cheng Q, Ma Q, Pei H, Mo Z (2022) Chiral membranes for enantiomer separation: a comprehensive review. Sep Purif Technol 292:121034. https://doi.org/10.1016/j.seppur.2022.121034

Article  CAS  Google Scholar 

Deacon J, Cooper R (1977) D‐Galactonate utilisation by enteric bacteria. The catabolic pathway in Escherichia coli. FEBS Lett 77(2):201–205. https://doi.org/10.1016/0014-5793(77)80234-2

Dey S, Murmu N, Mondal T, Saha I, Chatterjee S, Manna R, Haldar S, Dash SK, Sarkar TR, Giri B (2022) Multifaceted entrancing role of glucose and its analogue, 2-deoxy-d-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother 156:113801. https://doi.org/10.1016/j.biopha.2022.113801

Article  CAS  PubMed  Google Scholar 

Dreisewerd L, Aspers RLEG, Feiters MC, Rutjes FPJT, Tessari M (2023) Nmr discrimination of d- and l-α-amino acids at submicromolar concentration via parahydrogen-induced hyperpolarization. J Am Chem Soc 145(3):1518–1523. https://doi.org/10.1021/jacs.2c11285

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elshafei AM, Abdel-Fatah OM (1991) Nonphosphorolytic pathway for d-galactonate catabolism in Aspergillus terreus. Enzyme Microb Technol 13(11):930–934. https://doi.org/10.1016/0141-0229(91)90111-M

Article  CAS  Google Scholar 

Forbes M, Kempa R, Mastrobuoni G, Rayman L, Pietzke M, Bayram S, Arlt B, Spruessel A, Deubzer H, Kempa S (2024) l-Glyceraldehyde inhibits neuroblastoma cell growth via a multi-modal mechanism on metabolism and signaling. Cancers 16(9):1664. https://doi.org/10.1101/2023.12.20.572547

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hilditch S, Berghall S, Kalkkinen N, Penttilä M, Richard P (2007) The missing link in the fungal d-galacturonate pathway: identification of the l-threo-3-deoxy-hexulosonate aldolase. J Biol Chem 282(36):26195–26201. https://doi.org/10.1074/jbc.M704401200

Article  CAS  PubMed  Google Scholar 

Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278(45):43885–43888. https://doi.org/10.1074/jbc.R300025200

Article  CAS  PubMed  Google Scholar 

Jain K, Logothetopoulos J, Zucker P (1975) The effects of d-and l-glyceraldehyde on glucose oxidation, insulin secretion and insulin biosynthesis by pancreatic islets of the rat. Biochim Biophys Acta 399(2):384–394. https://doi.org/10.1016/0304-4165(75)90267-6

Article  CAS  PubMed  Google Scholar 

Kapoor R, Gundpatil D, Somani B, Saha T, Bandyopadhyay S, Misra P (2014) Anticancer effect of dl-glyceraldehyde and 2-deoxyglucose in ehrlich ascites carcinoma bearing mice and their effect on liver, kidney and haematological parameters. Indian J Clin Biochem 29:213–220. https://doi.org/10.1007/s12291-013-0343-y

Article  CAS  PubMed  Google Scholar 

Kopp D, Bergquist PL, Sunna A (2020) Enzymology of alternative carbohydrate catabolic pathways. Catalysts 10(11):1231. https://doi.org/10.3390/catal10111231

Article  CAS  Google Scholar 

Kuorelahti S, Kalkkinen N, Penttilä M, Londesborough J, Richard P (2005) Identification in the mold Hypocrea jecorina of the first fungal d-galacturonic acid reductase. Biochemistry 44(33):11234–11240. https://doi.org/10.1021/bi050792f

Kuorelahti S, Jouhten P, Maaheimo H, Penttilä M, Richard P (2006) l-Galactonate dehydratase is part of the fungal path for d-galacturonic acid catabolism. Mol Microbiol 61(4):1060–1068. https://doi.org/10.1111/j.1365-2958.2006.05294.x

Article  CAS  PubMed  Google Scholar 

Kvittingen L, Sjursnes BJ (2020) Demonstrating basic properties and application of polarimetry using a self-constructed polarimeter. J Chem Educ 97(8):2196–2202. https://doi.org/10.1021/acs.jchemed.9b00763

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lagarde AE, Pouysségur JM, Stoeber FR (1973) A transport system for 2-keto-3-deoxy-d-gluconate uptake in Escherichia coli K12. Biochemical and physiological studies in whole cells. Eur J Biochem 36(2):328–341. https://doi.org/10.1111/j.1432-1033.1973.tb02917.x

Article  CAS  PubMed  Google Scholar 

Li J, Chroumpi T, Garrigues S, Kun RS, Meng J, Salazar-Cerezo S, Aguilar-Pontes MV, Zhang Y, Tejomurthula S, Lipzen A, Ng V, Clendinen CS, Tolić N, Grigoriev IV, Tsang A, Mäkelä MR, Snel B, Peng M, de Vries RP (2022) The sugar metabolic model of Aspergillus niger can only be reliably transferred to fungi of its phylum. J Fungi (Basel) 8(12):1315. https://doi.org/10.3390/jof8121315

Article  CAS  PubMed  Google Scholar 

Lloyd DK, Goodall DM (1989) Polarimetric detection in high-performance liquid chromatography. Chirality 1(4):251–264. https://doi.org/10.1002/chir.530010403

Article  CAS  PubMed  Google Scholar 

Luo Z, Zeng W, Du G, Chen J, Zhou J (2019) Enhanced pyruvate production in Candida glabrata by engineering ATP futile cycle system. ACS Synth Biol 8(4):787–795. https://doi.org/10.1021/acssynbio.8b00479

Article  CAS  PubMed  Google Scholar 

Luo Q, Ding N, Liu Y, Zhang H, Fang Y, Yin L (2023) Metabolic engineering of microorganisms to produce pyruvate and derived compounds. Molecules 28(3):1418. https://doi.org/10.3390/molecules28031418

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martis BS, Droux M, Deboudard F, Nasser W, Meyer S, Reverchon S (2021) Separation and quantification of 2-keto-3-deoxy-gluconate (KDG) a major metabolite in pectin and alginate degradation pathways. Anal Biochem 619:114061. https://doi.org/10.1016/j.ab.2020.114061

Article  CAS  Google Scholar 

Moxley WC, Eiteman MA (2021) Pyruvate production by Escherichia coli by use of pyruvate dehydrogenase variants. Appl Environ Microbiol 87(13):e0048721. https://doi.org/10.1128/aem.00487-21

Article  CAS  PubMed  Google Scholar 

Parker D (1991) NMR determination of enantiomeric purity. Chem Rev 91(7):1441–1457. https://doi.org/10.1021/cr00007a009

Article  CAS  Google Scholar 

Peabody GL, Elmore JR, Martinez-Baird J, Guss AM (2019) Engineered Pseudomonas putida KT2440 co-utilizes galactose and glucose. Biotechnol Biofuels 12:1–7. https://doi.org/10.1186/s13068-019-1627-0

Article  CAS  Google Scholar 

Peltonen KE, Richard P (2022) Identification of a d-galacturonate reductase efficiently using nadh as a cofactor. Biotechnol Rep 35:e00744. https://doi.org/10.1016/j.btre.2022.e00744

Article  CAS  Google Scholar 

Pouyssegur J, Stoeber F (1974) Genetic control of the 2-keto-3-deoxy-d-gluconate metabolism in Escherichia coli K-12: Kdg regulon. J Bacteriol 117(2):641–651. https://doi.org/10.1128/jb.117.2.641-651.1974

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roman-Benn A, Contador CA, Li M-W, Lam H-M, Ah-Hen K, Ulloa PE, Ravanal MC (2023) Pectin: an overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chem Adv 2:100192. https://doi.org/10.1016/j.focha.2023.100192

Article 

Comments (0)

No login
gif