Alazi E, Khosravi C, Homan TG, du Pré S, Arentshorst M, Di Falco M, Pham TT, Peng M, Aguilar-Pontes MV, Visser J (2017) The pathway intermediate 2-keto-3-deoxy-l-galactonate mediates the induction of genes involved in d-galacturonic acid utilization in Aspergillus niger. FEBS Lett 591(10):1408–1418. https://doi.org/10.1002/1873-3468.12654
Article CAS PubMed PubMed Central Google Scholar
Araki C (1956) Structure of the agarose constituent of agar-agar. Bull Chem Soc Jpn 29(4):543–544. https://doi.org/10.1246/bcsj.29.543
Cao M, Jiang T, Li P, Zhang Y, Guo S, Meng W, Lü C, Zhang W, Xu P, Gao C, Ma C (2020) Pyruvate production from whey powder by metabolic engineered Klebsiella oxytoca. J Agric Food Chem 68(51):15275–15283. https://doi.org/10.1021/acs.jafc.0c06724
Article CAS PubMed Google Scholar
Cheng Q, Ma Q, Pei H, Mo Z (2022) Chiral membranes for enantiomer separation: a comprehensive review. Sep Purif Technol 292:121034. https://doi.org/10.1016/j.seppur.2022.121034
Deacon J, Cooper R (1977) D‐Galactonate utilisation by enteric bacteria. The catabolic pathway in Escherichia coli. FEBS Lett 77(2):201–205. https://doi.org/10.1016/0014-5793(77)80234-2
Dey S, Murmu N, Mondal T, Saha I, Chatterjee S, Manna R, Haldar S, Dash SK, Sarkar TR, Giri B (2022) Multifaceted entrancing role of glucose and its analogue, 2-deoxy-d-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother 156:113801. https://doi.org/10.1016/j.biopha.2022.113801
Article CAS PubMed Google Scholar
Dreisewerd L, Aspers RLEG, Feiters MC, Rutjes FPJT, Tessari M (2023) Nmr discrimination of d- and l-α-amino acids at submicromolar concentration via parahydrogen-induced hyperpolarization. J Am Chem Soc 145(3):1518–1523. https://doi.org/10.1021/jacs.2c11285
Article CAS PubMed PubMed Central Google Scholar
Elshafei AM, Abdel-Fatah OM (1991) Nonphosphorolytic pathway for d-galactonate catabolism in Aspergillus terreus. Enzyme Microb Technol 13(11):930–934. https://doi.org/10.1016/0141-0229(91)90111-M
Forbes M, Kempa R, Mastrobuoni G, Rayman L, Pietzke M, Bayram S, Arlt B, Spruessel A, Deubzer H, Kempa S (2024) l-Glyceraldehyde inhibits neuroblastoma cell growth via a multi-modal mechanism on metabolism and signaling. Cancers 16(9):1664. https://doi.org/10.1101/2023.12.20.572547
Article CAS PubMed PubMed Central Google Scholar
Hilditch S, Berghall S, Kalkkinen N, Penttilä M, Richard P (2007) The missing link in the fungal d-galacturonate pathway: identification of the l-threo-3-deoxy-hexulosonate aldolase. J Biol Chem 282(36):26195–26201. https://doi.org/10.1074/jbc.M704401200
Article CAS PubMed Google Scholar
Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278(45):43885–43888. https://doi.org/10.1074/jbc.R300025200
Article CAS PubMed Google Scholar
Jain K, Logothetopoulos J, Zucker P (1975) The effects of d-and l-glyceraldehyde on glucose oxidation, insulin secretion and insulin biosynthesis by pancreatic islets of the rat. Biochim Biophys Acta 399(2):384–394. https://doi.org/10.1016/0304-4165(75)90267-6
Article CAS PubMed Google Scholar
Kapoor R, Gundpatil D, Somani B, Saha T, Bandyopadhyay S, Misra P (2014) Anticancer effect of dl-glyceraldehyde and 2-deoxyglucose in ehrlich ascites carcinoma bearing mice and their effect on liver, kidney and haematological parameters. Indian J Clin Biochem 29:213–220. https://doi.org/10.1007/s12291-013-0343-y
Article CAS PubMed Google Scholar
Kopp D, Bergquist PL, Sunna A (2020) Enzymology of alternative carbohydrate catabolic pathways. Catalysts 10(11):1231. https://doi.org/10.3390/catal10111231
Kuorelahti S, Kalkkinen N, Penttilä M, Londesborough J, Richard P (2005) Identification in the mold Hypocrea jecorina of the first fungal d-galacturonic acid reductase. Biochemistry 44(33):11234–11240. https://doi.org/10.1021/bi050792f
Kuorelahti S, Jouhten P, Maaheimo H, Penttilä M, Richard P (2006) l-Galactonate dehydratase is part of the fungal path for d-galacturonic acid catabolism. Mol Microbiol 61(4):1060–1068. https://doi.org/10.1111/j.1365-2958.2006.05294.x
Article CAS PubMed Google Scholar
Kvittingen L, Sjursnes BJ (2020) Demonstrating basic properties and application of polarimetry using a self-constructed polarimeter. J Chem Educ 97(8):2196–2202. https://doi.org/10.1021/acs.jchemed.9b00763
Article CAS PubMed PubMed Central Google Scholar
Lagarde AE, Pouysségur JM, Stoeber FR (1973) A transport system for 2-keto-3-deoxy-d-gluconate uptake in Escherichia coli K12. Biochemical and physiological studies in whole cells. Eur J Biochem 36(2):328–341. https://doi.org/10.1111/j.1432-1033.1973.tb02917.x
Article CAS PubMed Google Scholar
Li J, Chroumpi T, Garrigues S, Kun RS, Meng J, Salazar-Cerezo S, Aguilar-Pontes MV, Zhang Y, Tejomurthula S, Lipzen A, Ng V, Clendinen CS, Tolić N, Grigoriev IV, Tsang A, Mäkelä MR, Snel B, Peng M, de Vries RP (2022) The sugar metabolic model of Aspergillus niger can only be reliably transferred to fungi of its phylum. J Fungi (Basel) 8(12):1315. https://doi.org/10.3390/jof8121315
Article CAS PubMed Google Scholar
Lloyd DK, Goodall DM (1989) Polarimetric detection in high-performance liquid chromatography. Chirality 1(4):251–264. https://doi.org/10.1002/chir.530010403
Article CAS PubMed Google Scholar
Luo Z, Zeng W, Du G, Chen J, Zhou J (2019) Enhanced pyruvate production in Candida glabrata by engineering ATP futile cycle system. ACS Synth Biol 8(4):787–795. https://doi.org/10.1021/acssynbio.8b00479
Article CAS PubMed Google Scholar
Luo Q, Ding N, Liu Y, Zhang H, Fang Y, Yin L (2023) Metabolic engineering of microorganisms to produce pyruvate and derived compounds. Molecules 28(3):1418. https://doi.org/10.3390/molecules28031418
Article CAS PubMed PubMed Central Google Scholar
Martis BS, Droux M, Deboudard F, Nasser W, Meyer S, Reverchon S (2021) Separation and quantification of 2-keto-3-deoxy-gluconate (KDG) a major metabolite in pectin and alginate degradation pathways. Anal Biochem 619:114061. https://doi.org/10.1016/j.ab.2020.114061
Moxley WC, Eiteman MA (2021) Pyruvate production by Escherichia coli by use of pyruvate dehydrogenase variants. Appl Environ Microbiol 87(13):e0048721. https://doi.org/10.1128/aem.00487-21
Article CAS PubMed Google Scholar
Parker D (1991) NMR determination of enantiomeric purity. Chem Rev 91(7):1441–1457. https://doi.org/10.1021/cr00007a009
Peabody GL, Elmore JR, Martinez-Baird J, Guss AM (2019) Engineered Pseudomonas putida KT2440 co-utilizes galactose and glucose. Biotechnol Biofuels 12:1–7. https://doi.org/10.1186/s13068-019-1627-0
Peltonen KE, Richard P (2022) Identification of a d-galacturonate reductase efficiently using nadh as a cofactor. Biotechnol Rep 35:e00744. https://doi.org/10.1016/j.btre.2022.e00744
Pouyssegur J, Stoeber F (1974) Genetic control of the 2-keto-3-deoxy-d-gluconate metabolism in Escherichia coli K-12: Kdg regulon. J Bacteriol 117(2):641–651. https://doi.org/10.1128/jb.117.2.641-651.1974
Article CAS PubMed PubMed Central Google Scholar
Roman-Benn A, Contador CA, Li M-W, Lam H-M, Ah-Hen K, Ulloa PE, Ravanal MC (2023) Pectin: an overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chem Adv 2:100192. https://doi.org/10.1016/j.focha.2023.100192
Comments (0)