Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro-Oncology. 2023;25:iv1-99. https://doi.org/10.1093/neuonc/noad149.
Cohen AR. Brain tumors in children. N Engl J Med. 2022;386:1922–31. https://doi.org/10.1056/NEJMra2116344.
Article CAS PubMed Google Scholar
Kaschka WP, Theilkaes L, Eickhoff K, Skvaril F. Disproportionate elevation of the immunoglobulin G1 concentration in cerebrospinal fluids of patients with multiple sclerosis. Infect Immun. 1979;26:933–41.
Article CAS PubMed PubMed Central Google Scholar
Petereit H, Rubbert-Roth A. Rituximab levels in cerebrospinal fluid of patients with neurological autoimmune disorders. Mult Scler. 2009;15:189–92. https://doi.org/10.1177/1352458508098268.
Article CAS PubMed Google Scholar
Rubenstein JL, Combs D, Rosenberg J, Levy A, McDermott M, Damon L, et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood. 2003;101:466–8. https://doi.org/10.1182/blood-2002-06-1636.
Article CAS PubMed Google Scholar
Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12:33–43. https://doi.org/10.1208/s12248-009-9157-5.
Article CAS PubMed Google Scholar
Browder T, Butterfield CE, Kräling BM, Shi B, Marshall B, O’Reilly MS, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000;60:1878–86.
Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 2000;105:R15-24. https://doi.org/10.1172/JCI8829.
Article CAS PubMed PubMed Central Google Scholar
Pasquier E, Kavallaris M, André N. Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol. 2010;7:455–65. https://doi.org/10.1038/nrclinonc.2010.82.
Peereboom DM, Alban TJ, Grabowski MM, Alvarado AG, Otvos B, Bayik D, et al. Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.130748.
Article PubMed PubMed Central Google Scholar
André N, Orbach D, Pasquier E. Metronomic maintenance for high-risk pediatric malignancies: one size will not fit all. Trends Cancer. 2020;6:819–28. https://doi.org/10.1016/j.trecan.2020.05.007.
Article CAS PubMed Google Scholar
Chen Y-L, Chang M-C, Cheng W-F. Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett. 2017;400:282–92. https://doi.org/10.1016/j.canlet.2017.01.040.
Article CAS PubMed Google Scholar
Peyrl A, Chocholous M, Kieran MW, Azizi AA, Prucker C, Czech T, et al. Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer. 2012;59:511–7. https://doi.org/10.1002/pbc.24006.
Slavc I, Mayr L, Stepien N, Gojo J, Aliotti Lippolis M, Azizi AA, et al. Improved long-term survival of patients with recurrent medulloblastoma treated with a “MEMMAT-like” metronomic antiangiogenic approach. Cancers. 2022;14:5128. https://doi.org/10.3390/cancers14205128.
Article CAS PubMed PubMed Central Google Scholar
Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012;15:171–85. https://doi.org/10.1007/s10456-011-9249-6.
Article CAS PubMed PubMed Central Google Scholar
Peyrl A, Chocholous M, Sabel M, Lassaletta A, Sterba J, Leblond P, et al. Sustained survival benefit in recurrent medulloblastoma by a metronomic antiangiogenic regimen: a nonrandomized controlled trial. JAMA Oncol. 2023;26: e234437. https://doi.org/10.1001/jamaoncol.2023.4437.
Zapotocky M, Ramaswamy V, Lassaletta A, Bouffet E. Adolescents and young adults with brain tumors in the context of molecular advances in neuro-oncology. Pediatr Blood Cancer. 2018;65: e26861. https://doi.org/10.1002/pbc.26861.
Geiger AM, Castellino SM. Delineating the age ranges used to define adolescents and young adults. JCO. 2011;29:e492–3. https://doi.org/10.1200/JCO.2011.35.5602.
Sender L, Zabokrtsky KB. Adolescent and young adult patients with cancer: a milieu of unique features. Nat Rev Clin Oncol. 2015;12:465–80. https://doi.org/10.1038/nrclinonc.2015.92.
Shnorhavorian M, Doody DR, Chen VW, Hamilton AS, Kato I, Cress RD, et al. Knowledge of clinical trial availability and reasons for nonparticipation among adolescent and young adult cancer patients: a population-based study. Am J Clin Oncol. 2018;41:581. https://doi.org/10.1097/COC.0000000000000327.
Article PubMed PubMed Central Google Scholar
Mould D, Upton R. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometr Syst Pharmacol. 2013;2:38. https://doi.org/10.1038/psp.2013.14.
Gojo J, Sauermann R, Knaack U, Slavc I, Peyrl A. Pharmacokinetics of bevacizumab in three patients under the age of 3 years with CNS malignancies. Drugs R D. 2017;17:469–74. https://doi.org/10.1007/s40268-017-0190-z.
Article CAS PubMed PubMed Central Google Scholar
Han K, Peyret T, Quartino A, Gosselin NH, Gururangan S, Casanova M, et al. Bevacizumab dosing strategy in paediatric cancer patients based on population pharmacokinetic analysis with external validation. Br J Clin Pharmacol. 2016;81:148–60. https://doi.org/10.1111/bcp.12778.
Article CAS PubMed Google Scholar
International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP. 2006. https://doi.org/10.1016/j.icrp.2006.06.001.
Ramakrishnan V, Yang QJ, Quach HP, Cao Y, Chow ECY, Mager DE, et al. Physiologically-based pharmacokinetic-pharmacodynamic modeling of 1,25-dihydroxyvitamin D3 in mice. Drug Metab Dispos. 2016;44:189–208. https://doi.org/10.1124/dmd.115.067033.
Article CAS PubMed Google Scholar
Kane Z, Gastine S, Obiero C, Williams P, Murunga S, Thitiri J, et al. IV and oral fosfomycin pharmacokinetics in neonates with suspected clinical sepsis. J Antimicrob Chemother. 2021;76:1855–64. https://doi.org/10.1093/jac/dkab083.
Article CAS PubMed PubMed Central Google Scholar
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10. https://doi.org/10.1186/1743-8454-5-10.
Article CAS PubMed PubMed Central Google Scholar
Krishnan K, Crouse LCB, Bazar MA, Major MA, Reddy G. Physiologically based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats. J Appl Toxicol. 2009;29:629–37. https://doi.org/10.1002/jat.1455.
Article CAS PubMed Google Scholar
Engelhardt B, Sorokin L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31:497–511.
Comments (0)