Distribution of Bevacizumab into the Cerebrospinal Fluid of Children and Adolescents with Recurrent Brain Tumors

Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2016–2020. Neuro-Oncology. 2023;25:iv1-99. https://doi.org/10.1093/neuonc/noad149.

Article  PubMed  Google Scholar 

Cohen AR. Brain tumors in children. N Engl J Med. 2022;386:1922–31. https://doi.org/10.1056/NEJMra2116344.

Article  CAS  PubMed  Google Scholar 

Kaschka WP, Theilkaes L, Eickhoff K, Skvaril F. Disproportionate elevation of the immunoglobulin G1 concentration in cerebrospinal fluids of patients with multiple sclerosis. Infect Immun. 1979;26:933–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petereit H, Rubbert-Roth A. Rituximab levels in cerebrospinal fluid of patients with neurological autoimmune disorders. Mult Scler. 2009;15:189–92. https://doi.org/10.1177/1352458508098268.

Article  CAS  PubMed  Google Scholar 

Rubenstein JL, Combs D, Rosenberg J, Levy A, McDermott M, Damon L, et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood. 2003;101:466–8. https://doi.org/10.1182/blood-2002-06-1636.

Article  CAS  PubMed  Google Scholar 

Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12:33–43. https://doi.org/10.1208/s12248-009-9157-5.

Article  CAS  PubMed  Google Scholar 

Browder T, Butterfield CE, Kräling BM, Shi B, Marshall B, O’Reilly MS, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 2000;60:1878–86.

CAS  PubMed  Google Scholar 

Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest. 2000;105:R15-24. https://doi.org/10.1172/JCI8829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasquier E, Kavallaris M, André N. Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol. 2010;7:455–65. https://doi.org/10.1038/nrclinonc.2010.82.

Article  PubMed  Google Scholar 

Peereboom DM, Alban TJ, Grabowski MM, Alvarado AG, Otvos B, Bayik D, et al. Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.130748.

Article  PubMed  PubMed Central  Google Scholar 

André N, Orbach D, Pasquier E. Metronomic maintenance for high-risk pediatric malignancies: one size will not fit all. Trends Cancer. 2020;6:819–28. https://doi.org/10.1016/j.trecan.2020.05.007.

Article  CAS  PubMed  Google Scholar 

Chen Y-L, Chang M-C, Cheng W-F. Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett. 2017;400:282–92. https://doi.org/10.1016/j.canlet.2017.01.040.

Article  CAS  PubMed  Google Scholar 

Peyrl A, Chocholous M, Kieran MW, Azizi AA, Prucker C, Czech T, et al. Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer. 2012;59:511–7. https://doi.org/10.1002/pbc.24006.

Article  PubMed  Google Scholar 

Slavc I, Mayr L, Stepien N, Gojo J, Aliotti Lippolis M, Azizi AA, et al. Improved long-term survival of patients with recurrent medulloblastoma treated with a “MEMMAT-like” metronomic antiangiogenic approach. Cancers. 2022;14:5128. https://doi.org/10.3390/cancers14205128.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012;15:171–85. https://doi.org/10.1007/s10456-011-9249-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peyrl A, Chocholous M, Sabel M, Lassaletta A, Sterba J, Leblond P, et al. Sustained survival benefit in recurrent medulloblastoma by a metronomic antiangiogenic regimen: a nonrandomized controlled trial. JAMA Oncol. 2023;26: e234437. https://doi.org/10.1001/jamaoncol.2023.4437.

Article  Google Scholar 

Zapotocky M, Ramaswamy V, Lassaletta A, Bouffet E. Adolescents and young adults with brain tumors in the context of molecular advances in neuro-oncology. Pediatr Blood Cancer. 2018;65: e26861. https://doi.org/10.1002/pbc.26861.

Article  CAS  Google Scholar 

Geiger AM, Castellino SM. Delineating the age ranges used to define adolescents and young adults. JCO. 2011;29:e492–3. https://doi.org/10.1200/JCO.2011.35.5602.

Article  Google Scholar 

Sender L, Zabokrtsky KB. Adolescent and young adult patients with cancer: a milieu of unique features. Nat Rev Clin Oncol. 2015;12:465–80. https://doi.org/10.1038/nrclinonc.2015.92.

Article  PubMed  Google Scholar 

Shnorhavorian M, Doody DR, Chen VW, Hamilton AS, Kato I, Cress RD, et al. Knowledge of clinical trial availability and reasons for nonparticipation among adolescent and young adult cancer patients: a population-based study. Am J Clin Oncol. 2018;41:581. https://doi.org/10.1097/COC.0000000000000327.

Article  PubMed  PubMed Central  Google Scholar 

Mould D, Upton R. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometr Syst Pharmacol. 2013;2:38. https://doi.org/10.1038/psp.2013.14.

Article  CAS  Google Scholar 

Gojo J, Sauermann R, Knaack U, Slavc I, Peyrl A. Pharmacokinetics of bevacizumab in three patients under the age of 3 years with CNS malignancies. Drugs R D. 2017;17:469–74. https://doi.org/10.1007/s40268-017-0190-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han K, Peyret T, Quartino A, Gosselin NH, Gururangan S, Casanova M, et al. Bevacizumab dosing strategy in paediatric cancer patients based on population pharmacokinetic analysis with external validation. Br J Clin Pharmacol. 2016;81:148–60. https://doi.org/10.1111/bcp.12778.

Article  CAS  PubMed  Google Scholar 

International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP. 2006. https://doi.org/10.1016/j.icrp.2006.06.001.

Article  Google Scholar 

Ramakrishnan V, Yang QJ, Quach HP, Cao Y, Chow ECY, Mager DE, et al. Physiologically-based pharmacokinetic-pharmacodynamic modeling of 1,25-dihydroxyvitamin D3 in mice. Drug Metab Dispos. 2016;44:189–208. https://doi.org/10.1124/dmd.115.067033.

Article  CAS  PubMed  Google Scholar 

Kane Z, Gastine S, Obiero C, Williams P, Murunga S, Thitiri J, et al. IV and oral fosfomycin pharmacokinetics in neonates with suspected clinical sepsis. J Antimicrob Chemother. 2021;76:1855–64. https://doi.org/10.1093/jac/dkab083.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5:10. https://doi.org/10.1186/1743-8454-5-10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnan K, Crouse LCB, Bazar MA, Major MA, Reddy G. Physiologically based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats. J Appl Toxicol. 2009;29:629–37. https://doi.org/10.1002/jat.1455.

Article  CAS  PubMed  Google Scholar 

Engelhardt B, Sorokin L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 2009;31:497–511.

Comments (0)

No login
gif