Long-term disruption of tissue levels of glutamate and glutamatergic neurotransmission neuromodulators, taurine and kynurenic acid induced by amphetamine

Ahrens AM, Ma ST, Maier EY, Duvauchelle CL, Schallert T (2009) Repeated intravenous amphetamine exposure: rapid and persistent sensitization of 50-kHz ultrasonic trill calls in rats. Behav Brain Res 197:205–209. https://doi.org/10.1016/j.bbr.2008.08.037

Article  CAS  PubMed  Google Scholar 

Al-Rafiah A, Rania M, Abdul AA, Nimah A (2021) Parkinson’s Disease-Related Biomarkers that may appear in Amphetamine Abusers. Biomed Res Int 2021. https://doi.org/10.1155/2021/3081891

Andersen PH (1988) Comparison of the pharmacological characteristics of [3H]raclopride and [3H]SCH 23390 binding to dopamine receptors in vivo in mouse brain. Eur J Pharmacol 146(1):113–120. https://doi.org/10.1016/0014-2999(88)90492-X

Article  CAS  PubMed  Google Scholar 

Anderzhanova E, Rayevsky KS, Saransaari P, Riitamaa E, Oja SS (2002) Effects of acute toxic doses of psychostimulants on extracellular levels of excitatory amino acids and taurine in rats comparison of d-amphetamine and sydnocarb. Ann N Y Acad Sci 965:193–203. https://doi.org/10.1111/j.1749-6632.2002.tb04161.x

Article  CAS  PubMed  Google Scholar 

Araos P, Vidal R, O’Shea E, Pedraz M, García-Marchena N, Serrano A, Suárez J, Castilla-Ortega E, Ruiz JJ, Campos-Cloute R, Santín LJ, Rodríguez de Fonseca F, Pavón FJ, Colado MI (2019) Serotonin is the main tryptophan metabolite associated with psychiatric comorbidity in abstinent cocaine-addicted patients. Sci Rep 9(1):16842. https://doi.org/10.1038/s41598-019-53312-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baker DA, Shen H, Kalivas PW (2002) Cystine/glutamate exchange serves as the source for extracellular glutamate: modifications by repeated cocaine administration. Amino Acids 23:161–162. https://doi.org/10.1007/s00726-001-0122-6

Article  CAS  PubMed  Google Scholar 

Baker DA, Mcfarland K, Lake RW, Shen H, Tang XC, Toda S, Kalivas PW (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 6(7):743–749. https://doi.org/10.1038/nn1069

Article  CAS  PubMed  Google Scholar 

Białoń M, Wąsik A (2022) Advantages and limitations of Animal Schizophrenia models. Int J Mol Sci 23(11):5968–6000. https://doi.org/10.3390/ijms23115968

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenate and FG9041 have both competitive and non-competitive antagonist actions at excitatory amino acid receptors. Eur J Pharmacol 151(2):313–315. https://doi.org/10.1016/0014-2999(88)90814-X

Article  CAS  PubMed  Google Scholar 

Brudzynski SM (2013) Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 23(3):310–317. https://doi.org/10.1016/j.conb.2013.01.014

Article  CAS  PubMed  Google Scholar 

Buck SA, Erickson-Oberg MQ, Logan RW, Freyberg Z (2022) Relevance of interactions between dopamine and glutamate neurotransmission in schizophrenia. Mol Psychiatry 27:3583–3591. https://doi.org/10.1038/s41380-022-01649-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Büki A, Kekesi G, Horvath G, Vécsei L (2021) A potential interface between the Kynurenine Pathway and autonomic imbalance in Schizophrenia. Int J Mol Sci 22:10016–10044. https://doi.org/10.3390/ijms221810016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgdorf J, Panksepp J (2006) The neurobiology of positive emotions. Neurosci Biobehav Rev 30(2):173–187. https://doi.org/10.1016/j.neubiorev.2005.06.001

Article  PubMed  Google Scholar 

Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13(11):2141–2147. https://doi.org/10.1046/j.0953-816x.2001.01592.x

Article  CAS  PubMed  Google Scholar 

Del Arco A, González-Mora JL, Armas VR, Mora F (1999) Amphetamine increases the extracellular concentration of glutamate in striatum of the awake rat: involvement of high affinity transporter mechanisms. Neuropharmacology 38(7):943–954. https://doi.org/10.1016/S0028-3908(99)00043-X

Article  PubMed  Google Scholar 

Doggui R, Elsawy W, Conti AA, Baldacchino A (2021) Association between chronic psychoactive substances use and systemic inflammation: a systematic review and meta-analysis. Neurosci Biobehav Rev 125:208–220. https://doi.org/10.1016/j.neubiorev.2021.02.031

Article  CAS  PubMed  Google Scholar 

Erhardt S, Schwieler L, Nilsson L, Linderholm K, Engberg G (2007) The kynurenic acid hypothesis of schizophrenia. Physiol Behav 92(1–2):203–209. https://doi.org/10.1016/j.physbeh.2007.05.025

Article  CAS  PubMed  Google Scholar 

Erhardt S, Schwieler L, Imbeault S, Engberg G (2017) The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology. 112(Pt B):297–306. https://doi.org/0.1016/j.neuropharm.2016.05.020

Everitt BJ, Robbins TW (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehavl Rev 1946–1954 37(9 Pt A):. https://doi.org/10.1016/j.neubiorev.2013.02.010

Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:23–50. https://doi.org/10.1146/annurev-psych-122414-033457

Article  PubMed  Google Scholar 

Ferguson SM, Thomas MJ, Robinson TE (2004) Morphine-induced c-fos mRNA expression in striatofugal circuits: modulation by dose, environmental context, and drug history. Neuropsychopharmacology 29(9):1664–1674. https://doi.org/10.1038/sj.npp.1300465

Article  CAS  PubMed  Google Scholar 

Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of Kynurenines: implications for Brain synthesis and metabolism. J Neurochem 56(6):2007–2017. https://doi.org/10.1111/j.1471-4159.1991.tb03460.x

Article  CAS  PubMed  Google Scholar 

Hulka LM, Scheidegger M, Vonmoos M, Preller KH, Baumgartner MR, Herdener M, Seifritz E, Henning A, Quednow BB (2016) Glutamatergic and neurometabolic alterations in chronic cocaine users measured with (1) H-magnetic resonance spectroscopy. Addict Biol 21(1):205–217. https://doi.org/10.1111/adb.12217

Jorratt P, Hoschl C, Ovsepian SV (2021) Endogenous antagonists of N-methyl-d-aspartate receptor in schizophrenia. Alzheimers Dement 17(5):888–905. https://doi.org/10.1002/alz.12244

Article  CAS  PubMed  Google Scholar 

Justinova Z, Mascia P, Wu HQ, Secci ME, Redhi GH, Panlilio LV, Scherma M, Barnes C, Parashos A, Zara T, Fratta W, Solinas M, Pistis M, Bergman J, Kangas BD, Ferré S, Tanda G, Schwarcz R, Goldberg SR (2013) Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. Nat Neurosci 16(11):1652–1661. https://doi.org/10.1038/nn.3540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiser S, Wonnacott S (2000) Alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [ 3 H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58(2):312–318. https://doi.org/10.1124/mol.58.2.312

Article  CAS  PubMed  Google Scholar 

Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10(8):561–572. https://doi.org/10.1038/nrn2515

Article  CAS  PubMed  Google Scholar 

Kaniuga E, Taracha E, Stępień T, Wierzba-Bobrowicz T, Płaźnik A, Chrapusta SJ (2016) Rats showing low and high sensitization of frequency-modulated 50-kHz vocalization response to amphetamine differ in amphetamine-induced brain Fos expression. Brain Res 1648:356–364. https://doi.org/10.1016/j.brainres.2016.08.008

Article  CAS  PubMed  Google Scholar 

Kessler M, Terramani T, Lynch G, Baudry M (1989) A Glycine site Associated with N-Methyl-D-Aspartic acid receptors: characterization and identification of a New Class of antagonists. J Neurochem 52(4):1319–1328. https://doi.org/10.1111/j.1471-4159.1989.tb01881.x

Article  CAS  PubMed  Google Scholar 

Kozak R, Campbell BM, Strick CA, Horner W, Hoffmann WE, Kiss T, Chapin DS, McGinnis D, Abbott AL, Roberts BM, Fonseca K, Guanowsky V, Young DA, Seymour PA, Dounay A, Hajos M, Williams GV, Castner SA (2014) Reduction of brain kynurenic acid improves cognitive function. J Neurosci 34(32):10592–10602. https://doi.org/10.1523/JNEUROSCI.1107-14.2014

Article 

Comments (0)

No login
gif