Ellagic Acid Reverses Alterations in the Expression of AMPA Receptor and Its Scaffolding Proteins in the Cerebral Cortex and Memory Decline in STZ-sporadic Alzheimer’ s Disease Mouse Model

Ahmed HA, Ismael S, Mirzahosseini G, Ishrat T (2021) Verapamil prevents development of cognitive impairment in an aged mouse model of sporadic Alzheimer’s Disease. Mol Neurobiol 58(7):3374–3387. https://doi.org/10.1007/s12035-021-02350-9

Article  CAS  PubMed  Google Scholar 

Ardah MT, Bharathan G, Kitada T, Haque ME (2020) Ellagic acid prevents dopamine neuron degeneration from oxidative stress and neuroinflammation in MPTP model of Parkinson’s disease. Biomolecules 10(11):1–17. https://doi.org/10.3390/biom10111519

Article  CAS  Google Scholar 

Ardiles ÁO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A, Inestrosa NC, Palacios AG (2012) Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease. Proc Natl Acad Sci U S A 21(34):109. https://doi.org/10.1073/pnas.1201209109

Article  CAS  Google Scholar 

Ardiles ÁO, Mandal CC, Alexandre M, Kirkwood F A., Inestrosa, N. C., & Palacios, A. G

Azumaya CM, Days EL, Vinson PN, Stauffer S, Sulikowski G, Weaver CD, Nakagawa T (2017) Screening for AMPA receptor auxiliary subunit specific modulators. PLoS ONE 12(3):1–23. https://doi.org/10.1371/journal.pone.0174742

Article  CAS  Google Scholar 

Baglietto-Vargas D, Prieto GA, Limon A, Forner S, Rodriguez-Ortiz CJ, Ikemura K, LaFerla FM (2018) Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer’s disease. Aging Cell 17(4):e12791. https://doi.org/10.1111/acel.12791

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal N, Yadav P, Kumar M (2017) Ellagic Acid Administration negated the Development of Streptozotocin-Induced memory deficit in rats. Drug Res (Stuttg) 67(7):425–431. https://doi.org/10.1055/s-0043-108552

Article  CAS  PubMed  Google Scholar 

Bats C, Groc L, Choquet D (2007) The Interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53(5):719–734. https://doi.org/10.1016/j.neuron.2007.01.030

Article  CAS  PubMed  Google Scholar 

Bell JD, Park E, Ai J, Baker AJ (2009) PICK1-mediated GluR2 endocytosis contributes to cellular injury after neuronal trauma. Cell Death Differ 16(12):1665–1680. https://doi.org/10.1038/cdd.2009.106

Article  CAS  PubMed  Google Scholar 

Bissen D, Foss F, Acker-Palmer A (2019) AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 76(11):2133–2169. https://doi.org/10.1007/s00018-019-03068-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Article  CAS  PubMed  Google Scholar 

Breijyeh Z, Karaman R (2020) Comprehensive Review on Alzheimer’s Disease: causes and treatment. Molecules 8(24):25. https://doi.org/10.3390/molecules25245789

Article  CAS  Google Scholar 

Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T (2020) The dual role of glutamatergic neurotransmission in Alzheimer’s disease: from pathophysiology to pharmacotherapy. Int J Mol Sci 21(20):1–29. https://doi.org/10.3390/ijms21207452

Article  CAS  Google Scholar 

Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A (2015) Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging Dis 6(4):282–299. https://doi.org/10.14336/AD.2014.002

Article  PubMed  PubMed Central  Google Scholar 

Chang PKY, Verbich D, Mckinney RA (2012) AMPA receptors as drug targets in neurological disease - advantages, caveats, and future outlook. Eur J Neurosci 35(12):1908–1916. https://doi.org/10.1111/j.1460-9568.2012.08165.x

Article  PubMed  Google Scholar 

Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Gong CX (2012) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s Disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47(2):711–725. https://doi.org/10.1007/s12035-012-8375-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen B, Wang G, Li W, Liu W, Lin R, Tao J, Jiang M, Chen L, Wang Y (2017) Memantine attenuates cell apoptosis by suppressing the calpain-caspase-3 pathway in an experimental model of ischemic stroke. Exp Cell Res 351(2):163–172. https://doi.org/10.1016/j.yexcr.2016.12.028

Article  CAS  PubMed  Google Scholar 

Cheong SL, Tiew JK, Fong YH, Leong HW, Chan YM, Chan ZL, Kong EWJ (2022) Current pharmacotherapy and Multi-target approaches for Alzheimer’s Disease. Pharmaceuticals 14(12):1560. https://doi.org/10.3390/ph15121560

Article  CAS  Google Scholar 

Cui SY, Song JZ, Cui XY, Hu X, Ma YN, Shi YT, Luo Y, Ge R, Ding H, Ye H, Zhang H (2018) Intracerebroventricular Streptozotocin-induced Alzheimer’s disease-like sleep disorders in rats: role of the GABAergic system in the parabrachial complex. CNS Neurosci Ther 24(12):1241–1252. https://doi.org/10.1111/cns.13032

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dikkala PK, Kakarlapudi J, Rokalla P, Vedantam SK, Kaur A, Kaur K, Sharma M, Sridhar K (2022) Computational screening of phytochemicals for anti-diabetic drug discovery. Phytochemistry, Computational Tools and Databases in Drug Discovery 285–311. https://doi.org/10.1016/B978-0-323-90593-0.00009-5

El-Missiry MA, Othman AI, Amer MA, Sedki M, Ali SM, El-Sherbiny IM (2020) Nanoformulated ellagic acid ameliorates pentylenetetrazol-induced experimental epileptic seizures by modulating oxidative stress, inflammatory cytokines and apoptosis in the brains of male mice. Metab Brain Dis 35(2):385–399. https://doi.org/10.1007/s11011-019-00502-4

Article  CAS  PubMed  Google Scholar 

Fan M, Liu S, Sun H, Ma M, Gao Y, Qi C, Xia Q, Ge J (2022) Bilateral intracerebroventricular injection of Streptozotocin induces AD-like behavioral impairments and neuropathological features in mice: involved with the fundamental role of neuroinflammation. Biomed Pharmacother 153:113375. https://doi.org/10.1016/j.biopha.2022.113375

Article  CAS  PubMed  Google Scholar 

Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328. https://doi.org/10.2174/092986708785909111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goudarzi M, Amiri S, Nesari A, Hosseinzadeh A, Mansouri E, Mehrzadi S (2018) The possible neuroprotective effect of ellagic acid on sodium arsenate-induced neurotoxicity in rats. Life Sci 198:38–45. https://doi.org/10.1016/j.lfs.2018.02.022

Article  CAS  PubMed  Google Scholar 

Grieb P (2016) Intracerebroventricular Streptozotocin Injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53(3):1741–1752. https://doi.org/10.1007/s12035-015-9132-3

Article  CAS  PubMed  Google Scholar 

Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15(1):1–37. https://doi.org/10.1186/s13024-020-00391-7

Article  Google Scholar 

Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A (2021) Neuroprotective potential of Ellagic Acid: a critical review. Adv Nutr 12(4):1211–1238. https://doi.org/10.1093/advances/nmab007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanley JG (2018) The regulation of AMPA receptor endocytosis by dynamic protein-protein interactions. Front Cell Neurosci 12:1–10. https://doi.org/10.1186/s13024-020-00391-7

Article  Google Scholar 

Javaid N, Shah MA, Rasul A, Chauhdary Z, Saleem U, Khan H, Ahmed N, Uddin MZ, Mathew B, Behl T, Blundell R (2020) Neuroprotective effects of Ellagic Acid in Alzheimer’s Disease: Focus on underlying molecular mechanisms of therapeutic potential. Curr Pharm Des 27(34):3591–3601. https://doi.org/10.2174/1381612826666201112144006

Article  CAS  Google Scholar 

Kamat PK (2015) Streptozotocin induced Alzheimer’s disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regen Res 10(7):1050–1052. https://doi.org/10.4103/1673-5374.160076

Comments (0)

No login
gif