Ahmed HA, Ismael S, Mirzahosseini G, Ishrat T (2021) Verapamil prevents development of cognitive impairment in an aged mouse model of sporadic Alzheimer’s Disease. Mol Neurobiol 58(7):3374–3387. https://doi.org/10.1007/s12035-021-02350-9
Article CAS PubMed Google Scholar
Ardah MT, Bharathan G, Kitada T, Haque ME (2020) Ellagic acid prevents dopamine neuron degeneration from oxidative stress and neuroinflammation in MPTP model of Parkinson’s disease. Biomolecules 10(11):1–17. https://doi.org/10.3390/biom10111519
Ardiles ÁO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A, Inestrosa NC, Palacios AG (2012) Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease. Proc Natl Acad Sci U S A 21(34):109. https://doi.org/10.1073/pnas.1201209109
Ardiles ÁO, Mandal CC, Alexandre M, Kirkwood F A., Inestrosa, N. C., & Palacios, A. G
Azumaya CM, Days EL, Vinson PN, Stauffer S, Sulikowski G, Weaver CD, Nakagawa T (2017) Screening for AMPA receptor auxiliary subunit specific modulators. PLoS ONE 12(3):1–23. https://doi.org/10.1371/journal.pone.0174742
Baglietto-Vargas D, Prieto GA, Limon A, Forner S, Rodriguez-Ortiz CJ, Ikemura K, LaFerla FM (2018) Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer’s disease. Aging Cell 17(4):e12791. https://doi.org/10.1111/acel.12791
Article CAS PubMed PubMed Central Google Scholar
Bansal N, Yadav P, Kumar M (2017) Ellagic Acid Administration negated the Development of Streptozotocin-Induced memory deficit in rats. Drug Res (Stuttg) 67(7):425–431. https://doi.org/10.1055/s-0043-108552
Article CAS PubMed Google Scholar
Bats C, Groc L, Choquet D (2007) The Interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53(5):719–734. https://doi.org/10.1016/j.neuron.2007.01.030
Article CAS PubMed Google Scholar
Bell JD, Park E, Ai J, Baker AJ (2009) PICK1-mediated GluR2 endocytosis contributes to cellular injury after neuronal trauma. Cell Death Differ 16(12):1665–1680. https://doi.org/10.1038/cdd.2009.106
Article CAS PubMed Google Scholar
Bissen D, Foss F, Acker-Palmer A (2019) AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 76(11):2133–2169. https://doi.org/10.1007/s00018-019-03068-7
Article CAS PubMed PubMed Central Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Article CAS PubMed Google Scholar
Breijyeh Z, Karaman R (2020) Comprehensive Review on Alzheimer’s Disease: causes and treatment. Molecules 8(24):25. https://doi.org/10.3390/molecules25245789
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T (2020) The dual role of glutamatergic neurotransmission in Alzheimer’s disease: from pathophysiology to pharmacotherapy. Int J Mol Sci 21(20):1–29. https://doi.org/10.3390/ijms21207452
Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A (2015) Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging Dis 6(4):282–299. https://doi.org/10.14336/AD.2014.002
Article PubMed PubMed Central Google Scholar
Chang PKY, Verbich D, Mckinney RA (2012) AMPA receptors as drug targets in neurological disease - advantages, caveats, and future outlook. Eur J Neurosci 35(12):1908–1916. https://doi.org/10.1111/j.1460-9568.2012.08165.x
Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Gong CX (2012) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s Disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47(2):711–725. https://doi.org/10.1007/s12035-012-8375-5
Article CAS PubMed PubMed Central Google Scholar
Chen B, Wang G, Li W, Liu W, Lin R, Tao J, Jiang M, Chen L, Wang Y (2017) Memantine attenuates cell apoptosis by suppressing the calpain-caspase-3 pathway in an experimental model of ischemic stroke. Exp Cell Res 351(2):163–172. https://doi.org/10.1016/j.yexcr.2016.12.028
Article CAS PubMed Google Scholar
Cheong SL, Tiew JK, Fong YH, Leong HW, Chan YM, Chan ZL, Kong EWJ (2022) Current pharmacotherapy and Multi-target approaches for Alzheimer’s Disease. Pharmaceuticals 14(12):1560. https://doi.org/10.3390/ph15121560
Cui SY, Song JZ, Cui XY, Hu X, Ma YN, Shi YT, Luo Y, Ge R, Ding H, Ye H, Zhang H (2018) Intracerebroventricular Streptozotocin-induced Alzheimer’s disease-like sleep disorders in rats: role of the GABAergic system in the parabrachial complex. CNS Neurosci Ther 24(12):1241–1252. https://doi.org/10.1111/cns.13032
Article CAS PubMed PubMed Central Google Scholar
Dikkala PK, Kakarlapudi J, Rokalla P, Vedantam SK, Kaur A, Kaur K, Sharma M, Sridhar K (2022) Computational screening of phytochemicals for anti-diabetic drug discovery. Phytochemistry, Computational Tools and Databases in Drug Discovery 285–311. https://doi.org/10.1016/B978-0-323-90593-0.00009-5
El-Missiry MA, Othman AI, Amer MA, Sedki M, Ali SM, El-Sherbiny IM (2020) Nanoformulated ellagic acid ameliorates pentylenetetrazol-induced experimental epileptic seizures by modulating oxidative stress, inflammatory cytokines and apoptosis in the brains of male mice. Metab Brain Dis 35(2):385–399. https://doi.org/10.1007/s11011-019-00502-4
Article CAS PubMed Google Scholar
Fan M, Liu S, Sun H, Ma M, Gao Y, Qi C, Xia Q, Ge J (2022) Bilateral intracerebroventricular injection of Streptozotocin induces AD-like behavioral impairments and neuropathological features in mice: involved with the fundamental role of neuroinflammation. Biomed Pharmacother 153:113375. https://doi.org/10.1016/j.biopha.2022.113375
Article CAS PubMed Google Scholar
Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328. https://doi.org/10.2174/092986708785909111
Article CAS PubMed PubMed Central Google Scholar
Goudarzi M, Amiri S, Nesari A, Hosseinzadeh A, Mansouri E, Mehrzadi S (2018) The possible neuroprotective effect of ellagic acid on sodium arsenate-induced neurotoxicity in rats. Life Sci 198:38–45. https://doi.org/10.1016/j.lfs.2018.02.022
Article CAS PubMed Google Scholar
Grieb P (2016) Intracerebroventricular Streptozotocin Injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53(3):1741–1752. https://doi.org/10.1007/s12035-015-9132-3
Article CAS PubMed Google Scholar
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15(1):1–37. https://doi.org/10.1186/s13024-020-00391-7
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A (2021) Neuroprotective potential of Ellagic Acid: a critical review. Adv Nutr 12(4):1211–1238. https://doi.org/10.1093/advances/nmab007
Article CAS PubMed PubMed Central Google Scholar
Hanley JG (2018) The regulation of AMPA receptor endocytosis by dynamic protein-protein interactions. Front Cell Neurosci 12:1–10. https://doi.org/10.1186/s13024-020-00391-7
Javaid N, Shah MA, Rasul A, Chauhdary Z, Saleem U, Khan H, Ahmed N, Uddin MZ, Mathew B, Behl T, Blundell R (2020) Neuroprotective effects of Ellagic Acid in Alzheimer’s Disease: Focus on underlying molecular mechanisms of therapeutic potential. Curr Pharm Des 27(34):3591–3601. https://doi.org/10.2174/1381612826666201112144006
Kamat PK (2015) Streptozotocin induced Alzheimer’s disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regen Res 10(7):1050–1052. https://doi.org/10.4103/1673-5374.160076
Comments (0)