Alexopoulou, L., Holt, A. C., Madzhitov, R., & Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature, 413(6857), 732–738. https://doi.org/10.1038/35099560.
Article CAS PubMed Google Scholar
Baker, D. G., Woods, T. A., Butchi, N. B., Morgan, T. M., Taylor, R. T., Sunyakumthorn, P., et al. (2013). Toll-like receptor 7 suppresses virus replication in neurons but does not affect viral pathogenesis in a mouse model of Langat virus infection. Journal of General Virology, 94(Pt 2), 336–347. https://doi.org/10.1099/vir.0.043984-0.
Article CAS PubMed PubMed Central Google Scholar
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., Reis, & Sousa, C. (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 303(5663), 1529–1531. https://doi.org/10.1126/science.1093616.
Article CAS PubMed Google Scholar
Dresselhaus, E. C., & Meffert, M. K. (2019). Cellular specificity of NF-kB functions in the nervous system. Frontiers in Immunology, 10, 1043. https://doi.org/10.3389/fimmu.2019.01043.
Article CAS PubMed PubMed Central Google Scholar
Gern, O. L., Mulenge, F., Pavlou, A., Ghita, L., Steffen, I., Stangel, M. (2021). Toll-like receptors in viral encephalitis. Viruses. 13(10), 2065. https://doi.org/10.3390/v13102065.
Ghita, L., Spanier, J., Chhatbar, C., Mulenge, F., Pavlou, A., Larsen, P. K., et al. (2021). MyD88-signaling by neurons induces chemokines that recruit protective leukocytes to the virus-infected CNS. Science Immunology, 6(60), eabc9165. https://doi.org/10.1126/sciimmunol.abc9165.
Article CAS PubMed PubMed Central Google Scholar
Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., et al. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature Immunology, 3(2), 196–200. https://doi.org/10.1038/ni758.
Article CAS PubMed Google Scholar
Howe, C. L., LaFrance-Corey, R. G., Goddery, E. N., Johnson, R. K., & Mirchia, K. (2017). Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. Journal of Neuroinflammation, 14(1), 238. https://doi.org/10.1186/s12974-017-1015-2.
Article CAS PubMed PubMed Central Google Scholar
Kwon, J., Arsenis, C., Suessmilch, M., McColl, A., Cavanagh, J., & Morris, B. J. (2022). Differential effects of toll-like receptor activation and differential mediation by MAP kinases of immune responses in microglial cells. Cellular and Molecular Neurobiology, 42(8), 2655–2671. https://doi.org/10.1007/s10571-021-01127-x.
Article CAS PubMed Google Scholar
Lehmann, S. M., Rosenberger, K., Krüger, C., Habbei, P., Derkow, K., Kaul, D., et al. (2012). Extracellularly delivered single-stranded viral RNA causes neurodegeneration dependent on TLR7. Journal of Immunology, 189(3), 1448–1458. https://doi.org/10.4049/jimmunol.1201078.
Luo, Z., Su, R., Wang, W., Liang, Y., Zeng, X., Shereen, M. A., et al. (2019). EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathogens, 15(11), e1008142. https://doi.org/10.1371/journal.ppat.1008142.
Article CAS PubMed PubMed Central Google Scholar
Meenambal, R., Kruk, T., Gurgul, J., Warszyński, P., & Jantas, D. (2023). Neuroprotective effects of polyacrylic acid (PAA) conjugated cerium oxide against hydrogen peroxide- and 6-OHDA-induced SH-SY5Y cell damage. Scientific Reports, 13, 18534. https://doi.org/10.1038/s41598-023-45318-6.
Article CAS PubMed PubMed Central Google Scholar
Mukherjee, S., Akbar, I., Kumari, B., Vrati, S., Basu, A., & Banerjee, A. (2019). Japanese encephalitis virus-induced let-7a/b interacted with the NOTCH-TLR7 pathway in microglia and facilitated neuronal death via caspase activation. Journal of Neurochemistry, 149(4), 518–534. https://doi.org/10.1111/jnc.14645.
Article CAS PubMed Google Scholar
Nishiya, T., Kajita, E., Miwa, S., & DeFranco, A. L. (2005). TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. Journal of Biological Chemistry, 280(44), 37107–37117. https://doi.org/10.1074/jbc.M504951200.
Article CAS PubMed Google Scholar
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to Image J: 25 years of image analysis. Nature Methods, 9, 671–675. https://doi.org/10.1038/nmeth.2089.
Article CAS PubMed PubMed Central Google Scholar
Town, T., Bai, F., Wang, T., Kaplan, A., Qian, F., Montgomery, R. R., et al. (2009). Toll-like receptor 7 mitigates lethal West Nile encephalitis via Interleukin 23-dependent immune cell infiltration and homing. Immunity, 30(2), 242–253. https://doi.org/10.1016/j.immuni.2008.11.012.
Article CAS PubMed PubMed Central Google Scholar
Yoshida, H., Imaizumi, T., Matsumiya, T., Seya, K., Kawaguchi, S., & Tanaka, H. (2018). Gnetin C suppresses double-stranded RNA-induced C-C motif chemokine ligand 2 (CCL2) and CCL5 production by inhibiting toll-like receptor 3 signaling pathway. Biomedical Research, 39(5), 231–240. https://doi.org/10.2220/biomedres.39.231.
Comments (0)