Large-scale 3D non-Cartesian coronary MRI reconstruction using distributed memory-efficient physics-guided deep learning with limited training data

Thedens DR, Irarrazaval P, Sachs TS, Meyer CH, Nishimura DG (1999) Fast magnetic resonance coronary angiography with a three-dimensional stack of spirals trajectory. Magn Reson Med 41(6):1170–1179

Article  CAS  PubMed  Google Scholar 

Wright KL, Hamilton JI, Griswold MA, Gulani V, Seiberlich N (2014) Non-Cartesian parallel imaging reconstruction. J Magn Reson Imaging 40(5):1022–1040

Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Lo WC, Hamilton JI, Barkauskas K, Saybasili H, Wright KL et al (2018) Single breath-hold 3D cardiac T1 mapping using through-time spiral GRAPPA. NMR Biomed 31(6):e3923

Article  PubMed  PubMed Central  Google Scholar 

Irarrazabal P, Nishimura DG (1995) Fast three dimensional magnetic resonance imaging. Magn Reson Med 33(5):656–662

Article  CAS  PubMed  Google Scholar 

Stehning C, Börnert P, Nehrke K, Eggers H, Dössel O (2004) Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med 52(1):197–203

Article  CAS  PubMed  Google Scholar 

Gurney PT, Hargreaves BA, Nishimura DG (2006) Design and analysis of a practical 3D cones trajectory. Magn Reson Med 55(3):575–582

Article  PubMed  Google Scholar 

Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48(2):297–305

Article  PubMed  Google Scholar 

Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72(3):707–717

Article  PubMed  Google Scholar 

Piccini D, Feng L, Bonanno G, Coppo S, Yerly J, Lim RP et al (2017) Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med 77(4):1473–1484

Article  PubMed  Google Scholar 

Bonanno G, Piccini D, Marchal B, Zenge M, Stuber M (2014) A new binning approach for 3D motion corrected self-navigated whole-heart coronary MRA using independent component analysis of individual coils. In: Proceedings of the 22nd annual meeting of ISMRM, Milan, p 936

Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP (2004) Self-gated cardiac cine MRI. Magn Reson Med 51(1):93–102

Article  PubMed  PubMed Central  Google Scholar 

Stehning C, Börnert P, Nehrke K, Dössel O (2005) Free breathing 3D balanced FFE coronary magnetic resonance angiography with prolonged cardiac acquisition windows and intra-RR motion correction. Magn Reson Med 53(3):719–723

Article  CAS  PubMed  Google Scholar 

Feng L, Coppo S, Piccini D, Yerly J, Lim RP, Masci PG et al (2018) 5D whole-heart sparse MRI. Magn Reson Med 79(2):826–838

Article  PubMed  Google Scholar 

Mistretta CA, Wieben O, Velikina J, Block W, Perry J, Wu Y et al (2006) Highly constrained backprojection for time-resolved MRI. Magn Reson Med 55(1):30–40

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng L, Delacoste J, Smith D, Weissbrot J, Flagg E, Moore WH et al (2019) Simultaneous evaluation of lung anatomy and ventilation using 4D respiratory-motion-resolved ultrashort echo time sparse MRI. J Magn Reson Imaging 49(2):411–422

Article  PubMed  Google Scholar 

Nam S, Akcakaya M, Basha T, Stehning C, Manning WJ, Tarokh V et al (2013) Compressed sensing reconstruction for whole-heart imaging with 3D radial trajectories: a graphics processing unit implementation. Magn Reson Med 69(1):91–102

Article  PubMed  Google Scholar 

Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T et al (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79(6):3055–3071

Article  PubMed  Google Scholar 

Schlemper J, Caballero J, Hajnal JV, Price A, Rueckert D (2017) A deep cascade of convolutional neural networks for MR image reconstruction. In: Information processing in medical imaging: 25th international conference, IPMI 2017, Boone, NC, USA, June 25–30, 2017, Proceedings 25. Springer, pp 647–658

Aggarwal HK, Mani MP, Jacob M (2018) MoDL: Model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 38(2):394–405

Article  PubMed  PubMed Central  Google Scholar 

Knoll F, Hammernik K, Zhang C, Moeller S, Pock T, Sodickson DK et al (2020) Deep-learning methods for parallel magnetic resonance imaging reconstruction: a survey of the current approaches, trends, and issues. IEEE Signal Process Mag 37(1):128–140

Article  PubMed  PubMed Central  Google Scholar 

Yaman B, Hosseini SAH, Moeller S, Ellermann J, Uğurbil K, Akçakaya M (2020) Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data. Magn Reson Med 84(6):3172–3191

Article  PubMed  PubMed Central  Google Scholar 

Hammernik K, Küstner T, Yaman B, Huang Z, Rueckert D, Knoll F et al (2023) Physics-driven deep learning for computational magnetic resonance imaging: combining physics and machine learning for improved medical imaging. IEEE Signal Process Mag 40(1):98–114

Article  PubMed  PubMed Central  Google Scholar 

Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO (2011) Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn Reson Med 66(4):1049–1056

Article  PubMed  Google Scholar 

Ramzi Z, Chaithya G, Starck J-L, Ciuciu P (2022) NC-PDNet: a density-compensated unrolled network for 2D and 3D non-Cartesian MRI reconstruction. IEEE Trans Med Imaging 41(7):1625–1638

Article  PubMed  Google Scholar 

Malavé MO, Baron CA, Koundinyan SP, Sandino CM, Ong F, Cheng JY et al (2020) Reconstruction of undersampled 3D non-Cartesian image-based navigators for coronary MRA using an unrolled deep learning model. Magn Reson Med 84(2):800–812

Article  PubMed  PubMed Central  Google Scholar 

Deng Z, Yaman B, Zhang C, Moeller S, Akçakaya M (2021) Efficient training of 3D unrolled neural networks for MRI reconstruction using small databases. In: 2021 55th Asilomar conference on signals, systems, and computers. IEEE, pp 886–889.

Chen Z, Chen Y, Xie Y, Li D, Christodoulou AG (2022) Data-consistent non-Cartesian deep subspace learning for efficient dynamic MR image reconstruction. In: 2022 IEEE 19th international symposium on biomedical imaging (ISBI). IEEE, pp 1–5

Kellman M, Zhang K, Markley E, Tamir J, Bostan E, Lustig M et al (2020) Memory-efficient learning for large-scale computational imaging. IEEE Trans Comput Imaging 6:1403–1414

Article  Google Scholar 

Baron CA, Dwork N, Pauly JM, Nishimura DG (2018) Rapid compressed sensing reconstruction of 3D non-Cartesian MRI. Magn Reson Med 79(5):2685–2692

Article  PubMed  Google Scholar 

Ramani S, Fessler JA (2013) Accelerated nonCartesian SENSE reconstruction using a majorize-minimize algorithm combining variable-splitting. In: 2013 IEEE 10th international symposium on biomedical imaging. IEEE, pp 704–707

Micikevicius P, Narang S, Alben J, Diamos G, Elsen E, Garcia D et al (2017) Mixed precision training. arXiv:1710.03740

Zhou L, Pan S, Wang J, Vasilakos AV (2017) Machine learning on big data: opportunities and challenges. Neurocomputing 237:350–361

Article  Google Scholar 

Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

Article  CAS  PubMed  Google Scholar 

Pruessmann KP, Weiger M, Börnert P, Boesiger P (2001) Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 46(4):638–651

Article  CAS  PubMed  Google Scholar 

Fessler JA (2020) Optimization methods for magnetic resonance image reconstruction: Key models and optimization algorithms. IEEE Signal Process Mag 37(1):33–40

Article  PubMed  PubMed Central  Google Scholar 

Kumar R, Purohit M, Svitkina Z, Vee E, Wang J (2019) Efficient rematerialization for deep networks. In: Advances in neural information processing systems, p 32

Griewank A (1999) An implementation of checkpointing for the reverse or adjoint model of differentiation. ACM Trans Math Softw 26(1):1–19

Google Scholar 

Jain P, Jain A, Nrusimha A, Gholami A, Abbeel P, Gonzalez J et al (2020) Checkmate: breaking the memory wall with optimal tensor rematerialization. Proc Mach Learn Syst 2:497–511

Google Scholar 

Etienne A, Botnar RM, Van Muiswinkel AM, Boesiger P, Manning WJ, Stuber M (2002) “Soap-Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 48(4):658–666

Article  PubMed 

Comments (0)

No login
gif