Society for Cardiovascular Magnetic Resonance et al (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15(1):91. https://doi.org/10.1186/1532-429X-15-91.
Messroghli DR et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19(1):75. https://doi.org/10.1186/s12968-017-0389-8
Article PubMed PubMed Central Google Scholar
Von Knobelsdorff-Brenkenhoff F, Schulz-Menger J (2015) Role of cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology. J Cardiovasc Magn Reson 18(1):6. https://doi.org/10.1186/s12968-016-0225-6
Steeden JA, Muthurangu V, Secinaro A (2022) Artificial intelligence-based evaluation of congenital heart disease. In: De Cecco CN, Van Assen M, Leiner T (Eds) Artificial intelligence in cardiothoracic imaging, in Contemporary medical imaging. Springer International Publishing, Berlin, pp. 365–376
Wang G, Ye JC, Mueller K, Fessler JA (2018) Image reconstruction is a new frontier of machine learning. IEEE Trans Med Imaging 37(6):1289–1296. https://doi.org/10.1109/TMI.2018.2833635
Ben Yedder H, Cardoen B, Hamarneh G (2021) Deep learning for biomedical image reconstruction: a survey. Artif Intell Rev 54(1):215–251. https://doi.org/10.1007/s10462-020-09861-2
Zhang H-M, Dong B (2020) A review on deep learning in medical image reconstruction. J Oper Res Soc China 8(2):311–340. https://doi.org/10.1007/s40305-019-00287-4
Danilouchkine M, Westenberg J, De Roos A, Reiber J, Lelieveldt B (2005) Operator induced variability in cardiovascular MR: left ventricular measurements and their reproducibility. J Cardiovasc Magn Reson 7(2):447–457. https://doi.org/10.1081/JCMR-200053578
Obermeyer Z, Emanuel EJ (2016) Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219. https://doi.org/10.1056/NEJMp1606181
Article PubMed PubMed Central Google Scholar
Edalati M et al (2022) Implementation and prospective clinical validation of AI-based planning and shimming techniques in cardiac MRI. Med Phys 49(1):129–143. https://doi.org/10.1002/mp.15327
Lanzer P, Barta C, Botvinick EH, Wiesendanger HU, Modin G, Higgins CB (1985) ‘ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 155(3):681–686. https://doi.org/10.1148/radiology.155.3.4001369
Article CAS PubMed Google Scholar
Wood G et al (2023) Automated detection of cardiac rest period for trigger delay calculation for image-based navigator coronary magnetic resonance angiography. J Cardiovasc Magn Reson 25(1):52. https://doi.org/10.1186/s12968-023-00962-9
Article PubMed PubMed Central Google Scholar
Huang T, Tseng Y, Chuang T (2014) Automatic calibration of trigger delay time for cardiac MRI. NMR Biomed 27(4):417–424. https://doi.org/10.1002/nbm.3076
Kellman P, Arai AE, McVeigh ER, Aletras AH (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47(2):372–383. https://doi.org/10.1002/mrm.10051
Article PubMed PubMed Central Google Scholar
Bahrami N, Retson T, Blansit K, Wang K, Hsiao A (2019) ‘Automated selection of myocardial inversion time with a convolutional neural network: Spatial temporal ensemble myocardium inversion network (STEMI-NET). Magn Reson Med 81(5):3283–3291. https://doi.org/10.1002/mrm.27680
Article PubMed PubMed Central Google Scholar
Wetzl J et al (2023) AI-based single-click cardiac MRI exam: initial clinical experience and evaluation in 44 patients. Presented at the International Society for Magnetic Resonance in Medicine (ISMRM) 31st Annual Meeting & Exhibition
Yoon SS et al (2021) Validation of a deep learning based automated myocardial inversion time selection for late gadolinium enhancement imaging in a prospective study. Presented at the International Society for Magnetic Resonance in Medicine (ISMRM) 29th Annual Meeting & Exhibition
Maillot A et al (2023) ‘Automated inversion time selection for black-blood late gadolinium enhancement cardiac imaging in clinical practice. Magn Reson Mater Phys Biol Med. https://doi.org/10.1007/s10334-023-01101-2
Sridi S et al (2022) ‘Improved myocardial scar visualization with fast free-breathing motion-compensated black-blood T1-rho-prepared late gadolinium enhancement MRI. Diagn Intervent Imaging. https://doi.org/10.1016/j.diii.2022.07.003
De Villedon De V, Naide et al (2024) Fully automated contrast selection of joint bright- and black-blood late gadolinium enhancement imaging for robust myocardial scar assessment. Magn Reson Imaging 109:256–263. https://doi.org/10.1016/j.mri.2024.03.035
Bustin A, Sridi S, Kamakura T, Jais P, Stuber M, Cochet H (2022) Free-breathing joint bright- and black-blood cardiovascular magnetic resonance imaging for the improved visualization of ablation-related radiofrequency lesions in the left ventricle. EP Europace. https://doi.org/10.1093/europace/euac053.594
Ginami G, Neji R, Phinikaridou A, Whitaker J, Botnar RM, Prieto C (2018) Simultaneous bright- and black-blood whole-heart MRI for noncontrast enhanced coronary lumen and thrombus visualization. Magn Reson Med 79(3):1460–1472. https://doi.org/10.1002/mrm.26815
Hallowell LM, Stewart SE, De Amorim CT, Silva E, Ditchfield MR (2008) Reviewing the process of preparing children for MRI. Pediatr Radiol 38(3):271–279. https://doi.org/10.1007/s00247-007-0704-x
Bustin A, Fuin N, Botnar RM, Prieto C (2020) ‘From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front Cardiovasc Med 7:17–17. https://doi.org/10.3389/fcvm.2020.00017
Article PubMed PubMed Central Google Scholar
Otazo R, Candès E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components: L+S reconstruction. Magn Reson Med 73(3):1125–1136. https://doi.org/10.1002/mrm.25240
Tariq U, Hsiao A, Alley M, Zhang T, Lustig M, Vasanawala SS (2013) Venous and arterial flow quantification are equally accurate and precise with parallel imaging compressed sensing 4D phase contrast MRI. Magn Reson Imaging 37(6):1419–1426. https://doi.org/10.1002/jmri.23936
Muckley MJ et al (2021) Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans Med Imaging 40(9):2306–2317. https://doi.org/10.1109/TMI.2021.3075856
Article PubMed PubMed Central Google Scholar
Knoll F et al (2020) Deep-learning methods for parallel magnetic resonance imaging reconstruction: a survey of the current approaches, trends, and issues. IEEE Signal Process Mag 37(1):128–140. https://doi.org/10.1109/MSP.2019.2950640
Article PubMed PubMed Central Google Scholar
Hammernik K, Schlemper J, Qin C, Duan J, Summers RM, Rueckert D (2021) Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination. Magn Reson Med 86(4):1859–1872. https://doi.org/10.1002/mrm.28827
Kofler A, Dewey M, Schaeffter T, Wald C, Kolbitsch C (2020) Spatio-temporal deep learning-based undersampling artefact reduction for 2D radial cine MRI with limited training data. IEEE Trans Med Imaging 39(3):703–717. https://doi.org/10.1109/TMI.2019.2930318
Küstner T et al (2020) CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci Rep 10(1):13710. https://doi.org/10.1038/s41598-020-70551-8
Article CAS PubMed PubMed Central Google Scholar
Hauptmann A, Arridge S, Lucka F, Muthurangu V, Steeden JA (2019) Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning–proof of concept in congenital heart disease. Magn Reson Med 81(2):1143–1156. https://doi.org/10.1002/mrm.27480
Mardani M et al (2018) Neural proximal gradient descent for compressive imaging. Adv Neural Inf Process Syst 2:9573–9538
Sandino CM, Cheng JY, Chen F, Mardani M, Pauly JM, Vasanawala SS (2020) Compressed sensing: from research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging. IEEE Signal Process Mag 37(1):117–127. https://doi.org/10.1109/MSP.2019.2950433
Comments (0)