Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–47.
Article CAS PubMed Google Scholar
Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7:359–90.
Sugaya E, Takato M, Noda Y. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J Neurophysiol. 1975;38:822–41.
Article CAS PubMed Google Scholar
Kraig RP, Nicholson C. Extracellular ionic variations during spreading depression. Neuroscience. 1978;3:1045–59.
Article CAS PubMed Google Scholar
Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci. 2014;15:379–93.
Article CAS PubMed Google Scholar
Seidel JL, Escartin C, Ayata C, Bonvento G, Shuttleworth CW. Multifaceted roles for astrocytes in spreading depolarization: a target for limiting spreading depolarization in acute brain injury? Glia. 2016;64:5–20.
Macvicar BA, Newman EA. Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol. 2015;7:1–15.
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain-barrier. Nat Methods. 2013;19:1584–96.
Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298:556–62.
Article CAS PubMed PubMed Central Google Scholar
Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;81:1065–96.
Article CAS PubMed Google Scholar
Charles A, Brennan K. Cortical spreading depression-new insights and persistent questions. Cephalalgia. 2009;29:1115–24.
Article CAS PubMed PubMed Central Google Scholar
Walch E, Murphy TR, Cuvelier N, Aldoghmi M, Morozova C, Donohue J, et al. Astrocyte-selective volume increase in elevated extracellular potassium conditions is mediated by the Na + /K + ATPase and occurs independently of aquaporin 4. ASN Neuro. 2020;12:175909142096715.
Peters O, Schipke CG, Hashimoto Y, Kettenmann H. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci. 2003;23:9888–96.
Article CAS PubMed PubMed Central Google Scholar
Kunkler PE, Kraig RP. Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosci. 1998;18:3416–25.
Article CAS PubMed PubMed Central Google Scholar
Basarsky TA, Duffy SN, Andrew RD, MacVicar BA. Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci. 1998;18:7189–99.
Article CAS PubMed PubMed Central Google Scholar
Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci. 2006;26:5438–47.
Article CAS PubMed PubMed Central Google Scholar
Marcaggi P, Attwell D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia. 2004;47:217–25.
Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129:1045–56.
Article CAS PubMed Google Scholar
Lucaciu SA, Leighton SE, Hauser A, Yee R, Laird DW. Diversity in connexin biology. J Biol Chem. 2023;299: 105263.
Article CAS PubMed PubMed Central Google Scholar
Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol. 2009;1: a002576.
Article PubMed PubMed Central Google Scholar
Sáez JC, Leybaert L. Hunting for connexin hemichannels. FEBS Lett. 2014;588:1205–11.
Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A. 2003;100:13644–9.
Article CAS PubMed PubMed Central Google Scholar
Palacios-Prado NN, Soto PA, López X, Choi EJ, Marquez-Miranda V, Rojas M, et al. Endogenous pannexin1 channels form functional intercellular cell-cell channels with characteristic voltage-dependent properties. Proc Natl Acad Sci U S A. 2022;119: e2202104119.
Article CAS PubMed PubMed Central Google Scholar
Yeung AK, Patil CS, Jackson MF. Pannexin-1 in the CNS: Emerging concepts in health and disease. J Neurochem. 2020;154:468–85.
Article CAS PubMed Google Scholar
Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics. 2004;83:706–16.
Article CAS PubMed Google Scholar
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev. 2021;101:93–145.
Article CAS PubMed Google Scholar
Orellana JA, Stehberg J. Hemichannels: new roles in astroglial function. Front Physiol. 2014;5:193.
Article PubMed PubMed Central Google Scholar
Abudara V, Retamal MA, Del Rio R, Orellana JA. Synaptic functions of hemichannels and pannexons: a double-edged sword. Front Mol Neurosci. 2018;11:1–24.
Roux L, Madar A, Lacroix MM, Yi C, Benchenane K, Giaume C. Astroglial connexin 43 hemichannels modulate olfactory bulb slow oscillations. J Neurosci. 2015;35:15339–52.
Article CAS PubMed PubMed Central Google Scholar
Cheung G, Bataveljic D, Visser J, Kumar N, Moulard J, Dallérac G, et al. Physiological synaptic activity and recognition memory require astroglial glutamine. Nat Commun. 2022;13:753.
Article CAS PubMed PubMed Central Google Scholar
Linsambarth S, Carvajal FJ, Moraga-Amaro R, Mendez L, Tamburini G, Jimenez I, et al. Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR-dependent transmission and short-term fear memory in the basolateral amygdala. FASEB J. 2022;36: e22134.
Article CAS PubMed Google Scholar
Tao X-D, Liu Z-R, Zhang Y-Q, Zhang X-H. Connexin43 hemichannels contribute to working memory and excitatory synaptic transmission of pyramidal neurons in the prefrontal cortex of rats. Life Sci. 2021;286: 120049.
Comments (0)