Exercise reduces physical alterations in a rat model of fetal alcohol spectrum disorders

Gupta KK, Gupta VK, Shirasaka T. An update on fetal alcohol syndrome-pathogenesis, risks, and treatment. Alcohol Clin Exp Res. 2016;40(8):1594–602.

Article  CAS  PubMed  Google Scholar 

Adickes E, Shuman R. Fetal alcohol myopathy. Pediatr Pathol. 1983;1:369–84.

Article  CAS  PubMed  Google Scholar 

Cook J, Green C, Lilley C, Anderson S, Baldwin M, Chudley A, et al. Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ. 2016;188:191–7.

Article  PubMed  PubMed Central  Google Scholar 

Brown LD. Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health. J Endocrinol. 2014;221(2):R13-29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walker MJ, Al-Sahab B, Islam F, Tamim H. The epidemiology of alcohol utilization during pregnancy: an analysis of the Canadian Maternity Experiences Survey (MES). BMC Pregnancy Childbirth. 2011;11:52.

Article  PubMed  PubMed Central  Google Scholar 

Lucas BR, Latimer J, Pinto RZ, Ferreira ML, Doney R, Lau M, et al. Gross motor deficits in children prenatally exposed to alcohol: a meta-analysis. Pediatrics. 2014;134(1):e192-209.

Article  PubMed  Google Scholar 

David P, Subramaniam K. Prenatal alcohol exposure and early postnatal changes in the developing nerve-muscle system. Birth Defects Res A Clin Mol Teratol. 2005;73(11):897–903.

Article  CAS  PubMed  Google Scholar 

Myrie SB, Pinder MA. Skeletal muscle and fetal alcohol spectrum disorder. Biochem Cell Biol. 2018;96(2):222–9.

Article  CAS  PubMed  Google Scholar 

Simmons RW, Nguyen TT, Levy SS, Thomas JD, Mattson SN, Riley EP. Children with heavy prenatal alcohol exposure exhibit deficits when regulating isometric force. Alcohol Clin Exp Res. 2012;36(2):302–9.

Article  CAS  PubMed  Google Scholar 

Nguyen TT, Levy SS, Riley EP, Thomas JD, Simmons RW. Children with heavy prenatal alcohol exposure experience reduced control of isotonic force. Alcohol Clin Exp Res. 2013;37(2):315–24.

Article  CAS  PubMed  Google Scholar 

Lucas BR, Elliott EJ, Coggan S, Pinto RZ, Jirikowic T, McCoy SW, et al. Interventions to improve gross motor performance in children with neurodevelopmental disorders: a meta-analysis. BMC Pediatr. 2016;16(1):193.

Article  PubMed  PubMed Central  Google Scholar 

Safe B, Joosten A, Bower C, Condon C, Watkins R, Mutch R, et al. A comparison of the motor skills of young people in a youth detention centre with diagnosed fetal alcohol spectrum disorder, prenatal alcohol exposure, and a reference population. J Fetal Alcohol Spectr Disord. 2018;1(1):e17–32.

Article  Google Scholar 

Christie BR, Swann SE, Fox CJ, Froc D, Lieblich SE, Redila V, et al. Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats. Eur J Neurosci. 2005;21(6):1719–26.

Article  PubMed  Google Scholar 

Thomas JD, Sather TM, Whinery LA. Voluntary exercise influences behavioral development in rats exposed to alcohol during the neonatal brain growth spurt. Behav Neurosci. 2008;122(6):1264–73.

Article  PubMed  PubMed Central  Google Scholar 

Lewelt A, Krosschell KJ, Stoddard GJ, Weng C, Xue M, Marcus RL, et al. Resistance strength training exercise in children with spinal muscular atrophy. Muscle Nerve. 2015;52(4):559–67.

Article  PubMed  PubMed Central  Google Scholar 

Rafie F, Ghasemi A, Zamani Jam A, Jalali S. Effect of exercise intervention on the perceptual-motor skills in adolescents with autism. J Sports Med Phys Fitness. 2017;57(1–2):53–9.

PubMed  Google Scholar 

Pritchard Orr AB, Keiver K, Bertram CP, Clarren S. FAST club: the impact of a physical activity intervention on executive function in children with fetal alcohol spectrum disorder. Adapt Phys Activ Q. 2018;35(4):403–23.

Article  PubMed  Google Scholar 

Pedersen BK. Muscles and their myokines. J Exp Biol. 2011;214(Pt 2):337–46.

Article  CAS  PubMed  Google Scholar 

Kim HJ, So B, Choi M, Kang D, Song W. Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans. Exp Gerontol. 2015;70:11–7.

Article  CAS  PubMed  Google Scholar 

Tine Kartinah N, Rosalyn Sianipar I, Rabia N. The effects of exercise regimens on irisin levels in obese rats model: comparing high-intensity intermittent with continuous moderate-intensity training. Biomed Res Int. 2018;2018:4708287.

Article  PubMed  PubMed Central  Google Scholar 

Park J, Kim J, Mikami T. Exercise hormone irisin prevents physical inactivity-induced cognitive decline in mice. Behav Brain Res. 2022;433: 114008.

Article  CAS  PubMed  Google Scholar 

Tsai CL, Pan CY, Tseng YT, Chen FC, Chang YC, Wang TC. Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults. Behav Brain Res. 2021;413: 113472.

Article  CAS  PubMed  Google Scholar 

Deacon RM. Measuring the strength of mice. J Vis Exp. 2013;76: e2610.

Google Scholar 

Thekkedam CG, Dutka TL, Van der Poel C, Burgio G, Dulhunty AF. The RyR1 P3528S substitution alters mouse skeletal muscle contractile properties and RyR1 ion channel gating. Int J Mol Sci. 2023;25(1):434.

Article  PubMed  PubMed Central  Google Scholar 

Tazhibi M, McQuillan N, Wei HJ, Gallitto M, Bendau E, Webster Carrion A, et al. Focused ultrasound-mediated blood-brain barrier opening is safe and feasible with moderately hypofractionated radiotherapy for brainstem diffuse midline glioma. J Transl Med. 2024;22(1):320.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duncan ND, Williams DA, Lynch GS. Adaptations in rat skeletal muscle following long-term resistance exercise training. Eur J Appl Physiol Occup Physiol. 1998;77(4):372–8.

Article  CAS  PubMed  Google Scholar 

Antonio-Santos J, Ferreira DJ, Gomes Costa GL, Matos RJ, Toscano AE, Manhães-de-Castro R, et al. Resistance training alters the proportion of skeletal muscle fibers but not brain neurotrophic factors in young adult rats. J Strength Cond Res. 2016;30(12):3531–8.

Article  PubMed  PubMed Central  Google Scholar 

Hornberger TA Jr, Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J Appl Physiol. 2004;29(1):16–31.

Article  CAS  PubMed  Google Scholar 

Adickes ED, Mollner TJ. Ethanol-induced cytoskeletal dysgenesis with dietary protein manipulations. Alcohol Alcohol. 1986;21(4):347–55.

CAS  PubMed  Google Scholar 

Meyer LS, Kotch LE, Riley EP. Alterations in gait following ethanol exposure during the brain growth spurt in rats. Alcohol Clin Exp Res. 1990;14(1):23–7.

Article  CAS  PubMed  Google Scholar 

Goodlett CR, Thomas JD, West JR. Long-term deficits in cerebellar growth and rotarod performance of rats following “binge-like” alcohol exposure during the neonatal brain growth spurt. Neurotoxicol Teratol. 1991;13(1):69–74.

Article  CAS  PubMed  Google Scholar 

Hannigan JH, Riley EP. Prenatal ethanol alters gait in rats. Alcohol. 1988;5(6):451–4.

Article  CAS 

Comments (0)

No login
gif