Data set terminology of deep learning in medicine: a historical review and recommendation

Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol. 2023;42:3–15.

Article  PubMed  PubMed Central  Google Scholar 

Yoshiura T, Kiryu S. FAIR: a recipe for ensuring fairness in healthcare artificial intelligence. Jpn J Radiol. 2024;42:1–2.

Article  PubMed  Google Scholar 

Kawamura M, Kamomae T, Yanagawa M, Kamagata K, Fujita S, Ueda D, et al. Revolutionizing radiation therapy: the role of AI in clinical practice. J Radiat Res. 2023. https://doi.org/10.1093/jrr/rrad090.

Article  PubMed  PubMed Central  Google Scholar 

Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, et al. Current state of artificial intelligence in clinical applications for head and neck MR imaging. Magn Reson Med Sci. 2023;22:401–14.

Article  PubMed  PubMed Central  Google Scholar 

Yanagawa M, Ito R, Nozaki T, Fujioka T, Yamada A, Fujita S, et al. New trend in artificial intelligence-based assistive technology for thoracic imaging. Radiol Med. 2023;128:1236–49.

Article  PubMed  PubMed Central  Google Scholar 

Hirata K, Kamagata K, Ueda D, Yanagawa M, Kawamura M, Nakaura T, et al. From FDG and beyond: the evolving potential of nuclear medicine. Ann Nucl Med. 2023;37:583–95.

Article  CAS  PubMed  Google Scholar 

Yamada A, Kamagata K, Hirata K, Ito R, Nakaura T, Ueda D, et al. Clinical applications of artificial intelligence in liver imaging. Radiol Med. 2023;128:655–67.

Article  PubMed  Google Scholar 

Tatsugami F, Nakaura T, Yanagawa M, Fujita S, Kamagata K, Ito R, et al. Recent advances in artificial intelligence for cardiac CT: enhancing diagnosis and prognosis prediction. Diagn Interv Imaging. 2023. https://doi.org/10.1016/j.diii.2023.06.011.

Article  PubMed  Google Scholar 

Ueda D, Shimazaki A, Miki Y. Technical and clinical overview of deep learning in radiology. Jpn J Radiol. 2019;37:15–33.

Article  PubMed  Google Scholar 

Matsumoto T, Walston SL, Walston M, Kabata D, Miki Y, Shiba M, et al. Deep learning-based time-to-death prediction model for COVID-19 patients using clinical data and chest radiographs. J Digit Imaging. 2023;36:178–88.

Article  PubMed  Google Scholar 

Chassagnon G, De Margerie-Mellon C, Vakalopoulou M, Marini R, Hoang-Thi T-N, Revel M-P, et al. Artificial intelligence in lung cancer: current applications and perspectives. Jpn J Radiol. 2023;41:235–44.

PubMed  Google Scholar 

Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, et al. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol. 2022;40:341–66.

Article  PubMed  Google Scholar 

Nakanishi K, Tanaka J, Nakaya Y, Maeda N, Sakamoto A, Nakayama A, et al. Whole-body MRI: detecting bone metastases from prostate cancer. Jpn J Radiol. 2022;40:229–44.

Article  PubMed  Google Scholar 

Tsang B, Gupta A, Takahashi MS, Baffi H, Ola T, Doria AS. Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment. Jpn J Radiol. 2023;41:1127–47.

Article  PubMed  Google Scholar 

Barat M, Pellat A, Hoeffel C, Dohan A, Coriat R, Fishman EK, et al. CT and MRI of abdominal cancers: current trends and perspectives in the era of radiomics and artificial intelligence. Jpn J Radiol. 2023. https://doi.org/10.1007/s11604-023-01504-0.

Article  PubMed  Google Scholar 

Barat M, Chassagnon G, Dohan A, Gaujoux S, Coriat R, Hoeffel C, et al. Artificial intelligence: a critical review of current applications in pancreatic imaging. Jpn J Radiol. 2021;39:514–23.

Article  PubMed  Google Scholar 

Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019;1:e271–97.

Article  PubMed  Google Scholar 

Kline RR. Cybernetics, automata studies, and the Dartmouth Conference on Artificial Intelligence. IEEE Ann Hist Comput. 2011;33:5–16.

Article  Google Scholar 

Turing AM. I.—Computing machinery and intelligence. Mind. 1950;LIX:433–60.

Article  Google Scholar 

Alpaydin E. Introduction to Machine Learning. Thomas Dietterich, Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, editor. MIT Press; 2010.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

Article  CAS  PubMed  Google Scholar 

Hinton G. Deep learning—a technology with the potential to transform health care. JAMA. 2018;320:1101–2.

Article  PubMed  Google Scholar 

Ripley BD. Pattern recognition and neural networks. Cambridge University Press; 1996. https://doi.org/10.1017/CBO9780511812651.

Book  Google Scholar 

Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med. 2003;138:W1-12.

Article  PubMed  Google Scholar 

Whiting P, Rutjes AWS, Reitsma JB, Bossuyt PMM, Kleijnen J. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003;3:25.

Article  PubMed  PubMed Central  Google Scholar 

Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.

Article  PubMed  Google Scholar 

Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351: h5527.

Article  PubMed  PubMed Central  Google Scholar 

Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55–63.

Article  PubMed  Google Scholar 

Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1-73.

Article  PubMed  Google Scholar 

Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med. 2019;170:51–8.

Article  PubMed  Google Scholar 

Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ. 2024;385: e078378.

Article  PubMed  PubMed Central  Google Scholar 

Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017;37:505–15.

Article  PubMed  Google Scholar 

Park SH, Kressel HY. Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci. 2018;33: e152.

Article  PubMed  PubMed Central  Google Scholar 

Bluemke DA, Moy L, Bredella MA, Ertl-Wagner BB, Fowler KJ, Goh VJ, et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-from the radiology editorial board. Radiology. 2020;294:487–9.

Article  PubMed  Google Scholar 

Mongan J, Moy L, Kahn CE Jr. Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers. Radiol Artif Intell. 2020;2: e200029.

Article  PubMed 

Comments (0)

No login
gif