Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique

Acosta-Cabronero, J., Betts, M. J., Cardenas-Blanco, A., Yang, S., & Nestor, P. J. (2016). In vivo MRI mapping of brain Iron deposition across the adult lifespan. The Journal of Neuroscience, 36, 364–374.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alushaj, E., et al. (2023). Subregional analysis of striatum iron in Parkinson’s disease and rapid eye movement sleep behaviour disorder. NeuroImage: Clinical, 40, 103519.

Article  PubMed  Google Scholar 

Alvarez Jerez, P., et al. (2023). Exploring the genetic and genomic connection underlying neurodegeneration with brain iron accumulation and the risk for Parkinson’s disease. npj Parkinson's Disease, 9, 1–9.

Article  Google Scholar 

Ariza, J., et al. (2017). Iron accumulation and dysregulation in the putamen in fragile X associated tremor/ataxia syndrome. Movement Disorders, 32, 585–591.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayton, S., et al. (2017). Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain, 140, 2112–2119.

Article  PubMed  Google Scholar 

Azuma, M., et al. (2016). Lateral asymmetry and spatial difference of Iron deposition in the Substantia Nigra of patients with Parkinson disease measured with quantitative susceptibility mapping. AJNR American Journal of Neuroradiology, 37, 782–788.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azuma, M., et al. (2019). Combining quantitative susceptibility mapping to the morphometric index in differentiating between progressive supranuclear palsy and Parkinson’s disease. Journal of the Neurological Sciences, 406, 116443.

Article  PubMed  Google Scholar 

Ball, N., Teo, W. P., Chandra, S., & Chapman, J. (2019). Parkinson's disease and the environment. Frontiers in neurology, 10, 421551.

Bartzokis, G., et al. (2011). Gender and Iron genes may modify associations between brain Iron and memory in healthy aging. Neuropsychopharmacology, 36, 1375–1384.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgetova, A., et al. (2017). Thalamic Iron differentiates primary-progressive and relapsing-remitting multiple sclerosis. AJNR American Journal of Neuroradiology, 38, 1079–1086.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camaschella, C., Nai, A., & Silvestri, L. (2020). Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica, 105, 260–272.

Article  PubMed  PubMed Central  Google Scholar 

Chen, Q., et al. (2019). Iron deposition in Parkinson’s disease by quantitative susceptibility mapping. BMC Neuroscience, 20, 23.

Article  PubMed  PubMed Central  Google Scholar 

Chen, Y., et al. (2023). Comparison between dual-energy CT and quantitative susceptibility mapping in assessing brain Iron deposition in Parkinson disease. AJNR American Journal of Neuroradiology, 44, 410–416.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, Q., et al. (2020). Evaluation of abnormal iron distribution in specific regions in the brains of patients with Parkinson’s disease using quantitative susceptibility mapping and R2* mapping. Experimental and Therapeutic Medicine, 19, 3778–3786.

CAS  PubMed  PubMed Central  Google Scholar 

Cheng, R., Dhorajia, V., Kim, J., & Kim, Y. (2022). Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology, 88, 88–101.

Article  CAS  PubMed  Google Scholar 

Cobzas, D., et al. (2015). Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis. Journal of Magnetic Resonance Imaging, 42, 1601–1610.

Article  PubMed  Google Scholar 

Coffman, C. H., et al. (2022). Quantitative susceptibility mapping of both ring and non-ring white matter lesions in relapsing remitting multiple sclerosis. Magnetic Resonance Imaging, 91, 45–51.

Article  CAS  PubMed  Google Scholar 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge. https://doi.org/10.4324/9780203771587

Book  Google Scholar 

Committee, Q. C. O., et al. (2024). Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro-magnetic tissue properties study group. Magnetic Resonance in Medicine, 91, 1834–1862.

Article  Google Scholar 

Daugherty, A. M., & Raz, N. (2016). Accumulation of Iron in the putamen predicts its shrinkage in healthy older adults: A multi-occasion longitudinal study. Neuroimage, 128, 11–20.

Article  CAS  PubMed  Google Scholar 

Du, L., et al. (2018). Increased Iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer’s disease. ACS Chemical Neuroscience, 9, 1849–1857.

Article  CAS  PubMed  Google Scholar 

Dusek, P., Dezortova, M., & Wuerfel, J. (2013). Chapter Nine - Imaging of Iron. In K. P. Bhatia & S. A. Schneider (Eds.), International Review of Neurobiology (Vol. 110, pp. 195–239). Academic Press.

Google Scholar 

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315, 629–634.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elkady, A. M., Cobzas, D., Sun, H., Blevins, G., & Wilman, A. H. (2017). Progressive iron accumulation across multiple sclerosis phenotypes revealed by sparse classification of deep gray matter. Journal of Magnetic Resonance Imaging, 46, 1464–1473.

Article  PubMed  Google Scholar 

Elkady, A. M., et al. (2019). Five year iron changes in relapsing-remitting multiple sclerosis deep gray matter compared to healthy controls. Multiple Sclerosis and Related Disorders, 33, 107–115.

Article  PubMed  Google Scholar 

Ficiarà, E., Stura, I., & Guiot, C. (2022). Iron deposition in brain: Does aging matter? International Journal of Molecular Sciences, 23, 10018.

Article  PubMed  PubMed Central  Google Scholar 

Fiscone, C., et al. (2023). Assessing robustness of quantitative susceptibility-based MRI radiomic features in patients with multiple sclerosis. Scientific Reports, 13, 16239.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fretham, S. J. B., Carlson, E. S., & Georgieff, M. K. (2011). The role of Iron in learning and Memory12. Advances in Nutrition, 2, 112–121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, X., et al. (2021). Time-specific pattern of Iron deposition in different regions in Parkinson’s disease measured by quantitative susceptibility mapping. Frontiers in Neurology, 12, 631210.

Article  PubMed  PubMed Central  Google Scholar 

Ghaderi, S., Batouli, S. A., Mohammadi, S., & Fatehi, F. (2023). Iron quantification in basal ganglia using quantitative susceptibility mapping in a patient with ALS: a case report and literature review. Frontiers in Neuroscience, 17, 1229082.

Ghaderi, S., Mohammadi, S., Nezhad, N. J., Karami, S., & Sayehmiri, F. (2024). Iron quantification in basal ganglia: quantitative susceptibility mapping as a potential biomarker for Alzheimer’s disease–a systematic review and meta-analysis. Frontiers in Neuroscience, 18, 1338891.

Gillen, K. M., Mubarak, M., Nguyen, T. D., & Pitt, D. (2018). Significance and in vivo detection of Iron-laden microglia in white matter multiple sclerosis lesions. Frontiers in Immunology, 9, 255.

Article  PubMed  PubMed Central  Google Scholar 

Gómez-Benito, M., Granado, N., García-Sanz, P., Michel, A., Dumoulin, M., & Moratalla, R. (2020). Modeling parkinson’s disease with the alpha-synuclein protein. Frontiers in pharmacology, 11, 524328.

Gong, N.-J., Dibb, R., Bulk, M., van der Weerd, L., & Liu, C. (2019). Imaging beta amyloid aggregation and iron accumulation in Alzheimer’s disease using quantitative susceptibility mapping MRI. Neuroimage, 191, 176–185.

Article  CAS  PubMed  Google Scholar 

Grubić Kezele, T., & Ćurko-Cofek, B. (2020). Age-related changes and sex-related differences in brain Iron metabolism. Nutrients, 12, 2601.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif