Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W et al (2022) The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol 42(7):1508–1520
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM et al (2022) Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 42(7):1473–1507
Article PubMed PubMed Central Google Scholar
Tangye S, Al-Herz W. Bous ha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. Journal of clinical immunology. 2020;40(1):24–64.
Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T et al (2020) Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 40(1):66–81
Article PubMed PubMed Central Google Scholar
Sharapova SO, Haapaniemi E, Sakovich IS, Kostyuchenko LV, Donkó A, Dulau-Florea A et al (2019) Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clin Immunol 205:1–5
Article CAS PubMed Google Scholar
Nagase M, Kurihara H, Aiba A, Young MJ, Sakai T (2016) Deletion of Rac1GTPase in the myeloid lineage protects against inflammation-mediated kidney injury in mice. PLoS ONE 11(3):e0150886
Article PubMed PubMed Central Google Scholar
Malhotra R, Sharma M, Dwivedi A, Kalra S (2021) A Case of Schimke Immunoosseous Dysplasia Caused by Large Deletion of SMARCAL1 Gene. Indian journal of endocrinology and metabolism 25(4):358–360
Article PubMed PubMed Central Google Scholar
Castellano-Martinez A, Acuñas-Soto S, Varga-Martinez R, Rodriguez-Gonzalez M, Mora-Lopez F, Iriarte-Gahete M et al (2022) Different Phenotypes of Schimke Immuno-Osseous Dysplasia (SIOD) in Two Sisters with the Same Mutation in the SMARCAL1 Gene. Endocr Metab Immune Disord Drug Targets 22(8):888–894
Article CAS PubMed Google Scholar
Guo W-y, Sun L-j, Dong H-r, Wang G-q, Xu X-y, Zhao Z-r et al (2021) Glomerular Complement Factor H-Related Protein 5 is Associated with Histologic Injury in Immunoglobulin A Nephropathy. Kidney International Reports 6(2):404–413
Márquez-Tirado B, Gutiérrez-Tenorio J, Tortajada A, Lucientes Continente L, Caravaca-Fontán F, Malik TH et al (2022) Factor H-Related Protein 1 Drives Disease Susceptibility and Prognosis in C3 Glomerulopathy. J Am Soc Nephrol 33(6):1137–1153
Article PubMed PubMed Central Google Scholar
Renner B, Laskowski J, Poppelaars F, Ferreira VP, Blaine J, Antonioli AH, et al. Factor H related proteins modulate complement activation on kidney cells. Kidney International. 2022.
Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H, Willicombe M, McLean AG, Brookes P et al (2017) Circulating complement factor H–related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int 92(4):942–952
Article CAS PubMed PubMed Central Google Scholar
Zhu L, Guo W-y, Shi S-f, Liu L-j, Lv J-c, Medjeral-Thomas NR, et al. Circulating complement factor H–related protein 5 levels contribute to development and progression of IgA nephropathy. Kidney international. 2018;94(1):150–8.
Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G et al (2009) Thrombomodulin mutations in atypical hemolytic–uremic syndrome. N Engl J Med 361(4):345–357
Article CAS PubMed PubMed Central Google Scholar
Norlund L, Zöller B, Öhlin A-K (1997) A novel thrombomodulin gene mutation in a patient suffering from sagittal sinus thrombosis. Thromb Haemost 78(10):1164–1166
Kunz G, Ohlin A-K, Adami A, Zöller B, Svensson P, Lane DA (2002) Naturally occurring mutations in the thrombomodulin gene leading to impaired expression and function. Blood, The Journal of the American Society of Hematology 99(10):3646–3653
Öhlin A-K, Marlar RA (1999) Thrombomodulin gene defects in families with thromboembolic disease–a report on four families. Thromb Haemost 81(03):338–344
Raina R, Sethi SK, Dragon-Durey M-A, Khooblall A, Sharma D, Khandelwal P et al (2022) Systematic review of atypical hemolytic uremic syndrome biomarkers. Pediatr Nephrol 37(7):1479–1493
Sullivan KE. 10 - Inherited Complement Deficiencies. In: Pyeritz RE, Korf BR, Grody WW, editors. Emery and Rimoin' s Principles and Practice of Medical Genetics and Genomics (Seventh Edition): Academic Press; 2023. p. 303–19.
Liszewski MK, Atkinson JP (2021) Membrane cofactor protein (MCP; CD46): deficiency states and pathogen connections. Curr Opin Immunol 72:126–134
Article CAS PubMed PubMed Central Google Scholar
Bruel A, Kavanagh D, Noris M, Delmas Y, Wong EK, Bresin E et al (2017) Hemolytic uremic syndrome in pregnancy and postpartum. Clin J Am Soc Nephrol 12(8):1237–1247
Article PubMed PubMed Central Google Scholar
Gaggl M, Aigner C, Csuka D, Szilágyi Á, Prohászka Z, Kain R et al (2018) Maternal and fetal outcomes of pregnancies in women with atypical hemolytic uremic syndrome. J Am Soc Nephrol 29(3):1020–1029
Article CAS PubMed Google Scholar
Phillips E, Westwood J, Brocklebank V, Wong E, Tellez J, Marchbank K et al (2016) The role of ADAMTS-13 activity and complement mutational analysis in differentiating acute thrombotic microangiopathies. J Thromb Haemost 14(1):175–185
Article CAS PubMed PubMed Central Google Scholar
Zhang T, Lu J, Liang S, Chen D, Zhang H, Zeng C et al (2016) Comprehensive analysis of complement genes in patients with atypical hemolytic uremic syndrome. Am J Nephrol 43(3):160–169
Article CAS PubMed Google Scholar
Osborne AJ, Breno M, Borsa NG, Bu F, Frémeaux-Bacchi V, Gale DP et al (2018) Statistical validation of rare complement variants provides insights into the molecular basis of atypical hemolytic uremic syndrome and C3 glomerulopathy. J Immunol 200(7):2464–2478
Article CAS PubMed Google Scholar
Van Zelm MC, Smet J, Adams B, Mascart F, Schandené L, Janssen F et al (2010) CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Investig 120(4):1265–1274
Article PubMed PubMed Central Google Scholar
van Zelm MC, Reisli I, van der Burg M, Castaño D, van Noesel CJM, van Tol MJD et al (2006) An Antibody-Deficiency Syndrome Due to Mutations in the CD19 Gene. N Engl J Med 354(18):1901–1912
Zelm MCv, Reisli I. CD19 Deficiency due to Genetic Defects in the CD19 and CD81 Genes. Humoral Primary Immunodeficiencies: Springer; 2019. p. 83–95.
Wentink MW, van Zelm MC, van Dongen JJ, Warnatz K, van der Burg M (2018) Deficiencies in the CD19 complex. Clin Immunol 195:82–87
Article CAS PubMed Google Scholar
Sharapova SO, Haapaniemi E, Sakovich IS, Kostyuchenko LV, Donkó A, Dulau-Florea A et al (2019) Heterozygous activating mutation in RAC2 causes infantile-onset combined immunodeficiency with susceptibility to viral infections. Clin Immunol 205:1–5
Article CAS PubMed Google Scholar
Lougaris V, Baronio M, Gazzurelli L, Benvenuto A, Plebani A (2020) RAC2 and primary human immune deficiencies. J Leukoc Biol 108(2):687–696
Article CAS PubMed Google Scholar
Alkhairy OK, Rezaei N, Graham RR, Abolhassani H, Borte S, Hultenby K, et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. The Journal of allergy and clinical immunology. 2015;135(5):1380–4.e1–5.
Bahrami S, Arshi S, Nabavi M, Bemanian MH, Fallahpour M, Rezaeifar A et al (2022) Progressive multifocal leukoencephalopathy in a patient with novel mutation in the RAC2 gene: a case report. J Med Case Reports 16(1):235
Alkhairy OK, Rezaei N, Graham RR, Abolhassani H, Borte S, Hultenby K, et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. Journal of Allergy and Clinical Immunology. 2015;135(5):1380–4. e5.
Bektas M, Allende ML, Lee BG, Chen W, Amar MJ, Remaley AT et al (2010) Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J Biol Chem 285(14):10880–10889
Article CAS PubMed PubMed Central Google Scholar
Serra M, Saba JD (2010) Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv Enzyme Regul 50(1):349–362
Comments (0)