Guo J, Meng Z, Chen G, Xie D, Chen Y, Wang H, Tang W, Liu L, Jing W, Long J, Guo W, Tian W (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng Part A 18(11–12):1239–1252. https://doi.org/10.1089/ten.TEA.2011.0503Epub 2012 Mar 19. PMID: 22320360
Article CAS PubMed Google Scholar
Bos GD, Goldberg VM, Powell AE, Heiple KG, Zika JM (1983) The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg 65:89–96
Article CAS PubMed Google Scholar
Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. ;1(1):60 – 8. https://doi.org/10.1097/00001665-199001000-00011. PMID: 1965154
Schmitz JP, Hollinger JO (1996) The critical size defect as an experimental model for craniomandibulofacial non-unions. Clin Orthop Relat Res 205:299–308
Cooper GM, Mooney MP, Gosain AK, Campbell PG, Losee JE, Huard J (2010) Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg 125(6):1685–1692. https://doi.org/10.1097/PRS.0b013e3181cb63a3PMID: 20517092; PMCID: PMC2946111
Article CAS PubMed PubMed Central Google Scholar
Monir A, Mukaibo T, Abd El-Aal ABM, Nodai T, Munemasa T, Kondo Y, Masaki C, El-Shair MA, Matsuo K, Hosokawa R (2021) Local administration of HMGB-1 promotes bone regeneration on the critical-sized mandibular defects in rabbits. Sci Rep 11(1):8950. https://doi.org/10.1038/s41598-021-88195-7PMID: 33903607; PMCID: PMC8076241
Article CAS PubMed PubMed Central Google Scholar
Awadeen MA, Al-Belasy FA, Ameen LE, Helal ME, Grawish ME (2020) Early therapeutic effect of platelet-rich fibrin combined with allogeneic bone marrow-derived stem cells on rats’ critical-sized mandibular defects. World J Stem Cells 12(1):55–69. https://doi.org/10.4252/wjsc.v12.i1.55PMID: 32110275; PMCID: PMC7031757
Article PubMed PubMed Central Google Scholar
Trejo-Iriarte CG, Serrano-Bello J, Gutiérrez-Escalona R, Mercado-Marques C, García-Honduvilla N, Buján-Varela J, Me-dina LA (2019) Evaluation of bone regeneration in a critical size cortical bone defect in rat mandible using microCT and his-tological analysis. Arch Oral Biol. ;101:165–171. doi: 10.1016/j.archoralbio.2019.01.010. Epub 2019 Feb 5. PMID: 30951954
Frame JW (1980) A convenient animal model for testing bone substitute materials. J Oral Surg 38(3):176–180 PMID: 6928181
Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O, Boechat MI (1988) Effect of sex steroids on peak bone density of growing rabbits. Am J Physiology-Endocrinology Metabolism 255:416–421
Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. ;13:1–10. https://doi.org/10.22203/ecm.v013a01. PMID: 17334975
Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277–284
Castaneda S, Largo R, Calvo E, Rodriguez-Salvanes F, Marcos ME, Diaz-Curiel M, Herrero-Beaumont G (2006) Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol 35:34–41
Article CAS PubMed Google Scholar
Cheng G, Li Z, Wan Q, Lv K, Li D, Xing X, Li Z (2015) A novel animal model treated with tooth extraction to repair the full-thickness defects in the mandible of rabbits. J Surg Res 194(2):706–716 Epub 2014 Nov 14. PMID: 25491176
Jianqi H, Hong H, Lieping S, Genghua G (2002) Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. J Oral Maxillofac Surg. ;60(12):1449-54. https://doi.org/10.1053/joms.2002.36108. PMID: 12465009
Kazakos K, Lyras DN, Thomaidis V, Agrogiannis G, Botaitis S, Drosos G, Kokka A, Verettas D (2011) Application of PRP gel alone or in combination with guided bone regeneration does not enhance bone healing process: an experimental study in rabbits. J Craniomaxillofac Surg 39(1):49–53 Epub 2010 Apr 24. PMID: 20456969
Wang Y, Zhang X, Mei S, Li Y, Khan AA, Guan S, Li X (2023) Determination of critical-sized defect of mandible in a rabbit model: micro-computed tomography, and histological evaluation. Heliyon 9(7):e18047. https://doi.org/10.1016/j.heliyon.2023.e18047PMID: 37539284; PMCID: PMC10393617
Article PubMed PubMed Central Google Scholar
Sakaguchi R, Xavier SP, Morinaga K, Botticelli D, Silva ER, Nakajima Y, Baba S (2023) Histological comparison of Collagenated Cancellous equine bone blocks used as inlay or onlay for lateral bone augmentation in rabbits. Mater (Basel) 16(20):6742. https://doi.org/10.3390/ma16206742PMID: 37895725; PMCID: PMC10608602Xxxxxxx
Asano A, Xavier SP, Ricardo Silva E, Morinaga K, Botticelli D, Nakajima Y, Baba S Critical-sized marginal defects around implants treated with xenografts in rabbits. Accepted for publication in Oral Maxillofac Surg
Botticelli D, Berglundh T, Lindhe J (2004) Resolution of bone defects of varying dimension and configuration in the marginal portion of the peri-implant bone. An experimental study in the dog. J Clin Periodontol. ;31(4):309 – 17. https://doi.org/10.1111/j.1600-051X.2004.00502.x. PMID: 15016260
Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. ;41(4):1149-60. https://doi.org/10.3758/BRM.41.4.1149. PMID: 19897823
Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, be-havioral, and biomedical sciences. Behav Res Methods. ;39(2):175 – 91. https://doi.org/10.3758/bf03193146. PMID: 17695343
Kotagudda Ranganath S, Schlund M, Delattre J, Ferri J, Chai F (2022) Bilateral double site (calvarial and mandibular) critical-size bone defect model in rabbits for evaluation of a craniofacial tissue engineering constructs. Mater Today Bio 14:100267. https://doi.org/10.1016/j.mtbio.2022.100267
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Zhang X, Mei S, Li Y, Khan AA, Guan S, Li X (2023) Determination of critical-sized defect of mandible in a rabbit model: micro-computed tomography, and histological evaluation. Heliyon 9(7):e18047. https://doi.org/10.1016/j.heliyon.2023.e18047
Article PubMed PubMed Central Google Scholar
Carmagnola D, Berglundh T, Lindhe J (2002) The effect of a fibrin glue on the integration of Bio-Oss with bone tissue. A ex-perimental study in labrador dogs. J Clin Periodontol. ;29(5):377 – 83. https://doi.org/10.1034/j.1600-051x.2002.290501.x. PMID: 12060419
Cardaropoli G, Araújo M, Hayacibara R, Sukekava F, Lindhe J (2005) Healing of extraction sockets and surgically produced - augmented and non-augmented - defects in the alveolar ridge. An experimental study in the dog. J Clin Periodontol. ;32(5):435 – 40. https://doi.org/10.1111/j.1600-051X.2005.00692.x. PMID: 15842256
Botticelli D, Berglundh T, Buser D, Lindhe J (2003) Appositional bone formation in marginal defects at implants. Clin Oral Implants Res. ;14(1):1–9. https://doi.org/10.1034/j.1600-0501.2003.140101.x. PMID: 12562359
Botticelli D, Berglundh T, Buser D, Lindhe J (2003) The jumping distance revisited: An experimental study in the dog. Clin Oral Implants Res. ;14(1):35–42. https://doi.org/10.1034/j.1600-0501.2003.140105.x. PMID: 12562363
Cardaropoli G, Araújo M, Lindhe J (2003) Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J Clin Periodontol. ;30(9):809 – 18. https://doi.org/10.1034/j.1600-051x.2003.00366.x. PMID: 12956657
Araújo MG, Lindhe J (2005) Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol. ;32(2):212-8. https://doi.org/10.1111/j.1600-051X.2005.00642.x. PMID: 15691354
Scala A, Lang NP, Schweikert MT, de Oliveira JA, Rangel-Garcia I Jr, Botticelli D (2014) Sequential healing of open extraction sockets. An experimental study in monkeys. Clin Oral Implants Res. ;25(3):288–295. https://doi.org/10.1111/clr.12148. Epub 2013 Apr 1. PMID: 23551527
Akimoto K, Becker W, Persson R, Baker DA, Rohrer MD, O’Neal RB (1999 May-Jun) Evaluation of titanium implants placed into simulated extraction sockets: a study in dogs. Int J Oral Maxillofac Implants 14(3):351–360 PMID: 10379108
Botticelli D, Berglundh T, Persson LG, Lindhe J (2005) Bone regeneration at implants with turned or rough surfaces in self-contained defects. An experimental study in the dog. J Clin Periodontol. ;32(5):448 – 55. https://doi.org/10.1111/j.1600-051X.2005.00693.x. PMID: 15842258
Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q (2023) Surface-modified titanium and titanium-based alloys for improved osteogenesis: a critical review. Heliyon 10(1):e23779 PMID: 38223705; PMCID: PMC10784177
Article PubMed PubMed Central Google Scholar
Liang J, Lu X, Zheng X, Li YR, Geng X, Sun K, Cai H, Jia Q, Jiang HB, Liu K (2023) Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Front Bioeng Biotechnol 11:1269223. https://doi.org/10.3389/fbioe.2023.1269223PMID: 38033819; PMCID: PMC10686101
Article PubMed PubMed Central Google Scholar
Yang S, Jiang W, Ma X, Wang Z, Sah RL, Wang J, Sun Y (2023) Nanoscale morphologies on the surface of 3D-Printed Titanium implants for Improved Osseointegration: a systematic review of the literature. Int J Nanomed 18:4171–4191 PMID: 37525692; PMCID: PMC10387278
Scarano A, Orsini T, Di Carlo F, Valbonetti L, Lorusso F (2021) Graphene-Doped Poly (Methyl-Methacrylate) (Pmma) implants: a Micro-CT and histomorphometrical study in rabbits. Int J Mol Sci 22(3):1441. https://doi.org/10.3390/ijms22031441PMID: 33535482; PMCID: PMC7867091
Article CAS PubMed PubMed Central Google Scholar
Rahmani R, Lyubartsev AP (2023) Biomolecular Adsorprion at ZnS nanomaterials: a Molecular Dynamics Simulation Study of the Adsorption preferences, effects of the Surface curvature and coating. Nanomaterials (Basel) 13(15):2239. https://doi.org/10.3390/nano13152239PMID: 37570556; PMCID: PMC10421200
Article CAS PubMed Google Scholar
Araújo MG, Sonohara M, Hayacibara R, Cardaropoli G, Lindhe J (2002) Lateral ridge augmentation by the use of grafts comprised of autologous bone or a biomaterial. An experiment in the dog. J Clin Periodontol. ;29(12):1122-31. https://doi.org/10.1034/j.1600-051x.2002.291213.x. PMID: 12492915
Santis E, Lang NP, Favero G, Beolchini M, Morelli F, Botticelli D (2015) Healing at mandibular block-grafted sites. An experimental study in dogs. Clin Oral Implants Res 26(5):516–522. https://doi.org/10.1111/clr.12434Epub 2014 Jun 12. PMID: 24921198
Kanayama M, Botticelli D, Apaza Alccayhuaman KA, Yonezawa D, Silva ER, Xavier SP (2021) Jul-Aug;36(4):703–714 The Impact on the Healing of Bioactivation with Argon Plasma of a Xenogeneic Graft with Adequate Fixation but Poor Adaptation to the Recipient Site: An Experimental Study in Rabbits. Int J Oral Maxillofac Implants. https://doi.org/10.11607/jomi.8695. PMID: 34411209
Herford AS, Boyne PJ (2008) Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg 66:616–624
Chim H, Gosain AK (2009) Biomaterials in craniofacial surgery: experimental studies and clinical application. J Craniofac Surg 20:29–33
Misch CE, Qu Z, Bidez MW (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 57:700–706 discussion 706-8
Comments (0)