Critical-sized marginal defects around implants in the rabbit mandible

Guo J, Meng Z, Chen G, Xie D, Chen Y, Wang H, Tang W, Liu L, Jing W, Long J, Guo W, Tian W (2012) Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds. Tissue Eng Part A 18(11–12):1239–1252. https://doi.org/10.1089/ten.TEA.2011.0503Epub 2012 Mar 19. PMID: 22320360

Article  CAS  PubMed  Google Scholar 

Bos GD, Goldberg VM, Powell AE, Heiple KG, Zika JM (1983) The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg 65:89–96

Article  CAS  PubMed  Google Scholar 

Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg. ;1(1):60 – 8. https://doi.org/10.1097/00001665-199001000-00011. PMID: 1965154

Schmitz JP, Hollinger JO (1996) The critical size defect as an experimental model for craniomandibulofacial non-unions. Clin Orthop Relat Res 205:299–308

Google Scholar 

Cooper GM, Mooney MP, Gosain AK, Campbell PG, Losee JE, Huard J (2010) Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg 125(6):1685–1692. https://doi.org/10.1097/PRS.0b013e3181cb63a3PMID: 20517092; PMCID: PMC2946111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monir A, Mukaibo T, Abd El-Aal ABM, Nodai T, Munemasa T, Kondo Y, Masaki C, El-Shair MA, Matsuo K, Hosokawa R (2021) Local administration of HMGB-1 promotes bone regeneration on the critical-sized mandibular defects in rabbits. Sci Rep 11(1):8950. https://doi.org/10.1038/s41598-021-88195-7PMID: 33903607; PMCID: PMC8076241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awadeen MA, Al-Belasy FA, Ameen LE, Helal ME, Grawish ME (2020) Early therapeutic effect of platelet-rich fibrin combined with allogeneic bone marrow-derived stem cells on rats’ critical-sized mandibular defects. World J Stem Cells 12(1):55–69. https://doi.org/10.4252/wjsc.v12.i1.55PMID: 32110275; PMCID: PMC7031757

Article  PubMed  PubMed Central  Google Scholar 

Trejo-Iriarte CG, Serrano-Bello J, Gutiérrez-Escalona R, Mercado-Marques C, García-Honduvilla N, Buján-Varela J, Me-dina LA (2019) Evaluation of bone regeneration in a critical size cortical bone defect in rat mandible using microCT and his-tological analysis. Arch Oral Biol. ;101:165–171. doi: 10.1016/j.archoralbio.2019.01.010. Epub 2019 Feb 5. PMID: 30951954

Frame JW (1980) A convenient animal model for testing bone substitute materials. J Oral Surg 38(3):176–180 PMID: 6928181

CAS  PubMed  Google Scholar 

Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O, Boechat MI (1988) Effect of sex steroids on peak bone density of growing rabbits. Am J Physiology-Endocrinology Metabolism 255:416–421

Article  Google Scholar 

Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. ;13:1–10. https://doi.org/10.22203/ecm.v013a01. PMID: 17334975

Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277–284

Article  Google Scholar 

Castaneda S, Largo R, Calvo E, Rodriguez-Salvanes F, Marcos ME, Diaz-Curiel M, Herrero-Beaumont G (2006) Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol 35:34–41

Article  CAS  PubMed  Google Scholar 

Cheng G, Li Z, Wan Q, Lv K, Li D, Xing X, Li Z (2015) A novel animal model treated with tooth extraction to repair the full-thickness defects in the mandible of rabbits. J Surg Res 194(2):706–716 Epub 2014 Nov 14. PMID: 25491176

Article  PubMed  Google Scholar 

Jianqi H, Hong H, Lieping S, Genghua G (2002) Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. J Oral Maxillofac Surg. ;60(12):1449-54. https://doi.org/10.1053/joms.2002.36108. PMID: 12465009

Kazakos K, Lyras DN, Thomaidis V, Agrogiannis G, Botaitis S, Drosos G, Kokka A, Verettas D (2011) Application of PRP gel alone or in combination with guided bone regeneration does not enhance bone healing process: an experimental study in rabbits. J Craniomaxillofac Surg 39(1):49–53 Epub 2010 Apr 24. PMID: 20456969

Article  PubMed  Google Scholar 

Wang Y, Zhang X, Mei S, Li Y, Khan AA, Guan S, Li X (2023) Determination of critical-sized defect of mandible in a rabbit model: micro-computed tomography, and histological evaluation. Heliyon 9(7):e18047. https://doi.org/10.1016/j.heliyon.2023.e18047PMID: 37539284; PMCID: PMC10393617

Article  PubMed  PubMed Central  Google Scholar 

Sakaguchi R, Xavier SP, Morinaga K, Botticelli D, Silva ER, Nakajima Y, Baba S (2023) Histological comparison of Collagenated Cancellous equine bone blocks used as inlay or onlay for lateral bone augmentation in rabbits. Mater (Basel) 16(20):6742. https://doi.org/10.3390/ma16206742PMID: 37895725; PMCID: PMC10608602Xxxxxxx

Article  CAS  Google Scholar 

Asano A, Xavier SP, Ricardo Silva E, Morinaga K, Botticelli D, Nakajima Y, Baba S Critical-sized marginal defects around implants treated with xenografts in rabbits. Accepted for publication in Oral Maxillofac Surg

Botticelli D, Berglundh T, Lindhe J (2004) Resolution of bone defects of varying dimension and configuration in the marginal portion of the peri-implant bone. An experimental study in the dog. J Clin Periodontol. ;31(4):309 – 17. https://doi.org/10.1111/j.1600-051X.2004.00502.x. PMID: 15016260

Faul F, Erdfelder E, Buchner A, Lang AG (2009) Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. ;41(4):1149-60. https://doi.org/10.3758/BRM.41.4.1149. PMID: 19897823

Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, be-havioral, and biomedical sciences. Behav Res Methods. ;39(2):175 – 91. https://doi.org/10.3758/bf03193146. PMID: 17695343

Kotagudda Ranganath S, Schlund M, Delattre J, Ferri J, Chai F (2022) Bilateral double site (calvarial and mandibular) critical-size bone defect model in rabbits for evaluation of a craniofacial tissue engineering constructs. Mater Today Bio 14:100267. https://doi.org/10.1016/j.mtbio.2022.100267

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Zhang X, Mei S, Li Y, Khan AA, Guan S, Li X (2023) Determination of critical-sized defect of mandible in a rabbit model: micro-computed tomography, and histological evaluation. Heliyon 9(7):e18047. https://doi.org/10.1016/j.heliyon.2023.e18047

Article  PubMed  PubMed Central  Google Scholar 

Carmagnola D, Berglundh T, Lindhe J (2002) The effect of a fibrin glue on the integration of Bio-Oss with bone tissue. A ex-perimental study in labrador dogs. J Clin Periodontol. ;29(5):377 – 83. https://doi.org/10.1034/j.1600-051x.2002.290501.x. PMID: 12060419

Cardaropoli G, Araújo M, Hayacibara R, Sukekava F, Lindhe J (2005) Healing of extraction sockets and surgically produced - augmented and non-augmented - defects in the alveolar ridge. An experimental study in the dog. J Clin Periodontol. ;32(5):435 – 40. https://doi.org/10.1111/j.1600-051X.2005.00692.x. PMID: 15842256

Botticelli D, Berglundh T, Buser D, Lindhe J (2003) Appositional bone formation in marginal defects at implants. Clin Oral Implants Res. ;14(1):1–9. https://doi.org/10.1034/j.1600-0501.2003.140101.x. PMID: 12562359

Botticelli D, Berglundh T, Buser D, Lindhe J (2003) The jumping distance revisited: An experimental study in the dog. Clin Oral Implants Res. ;14(1):35–42. https://doi.org/10.1034/j.1600-0501.2003.140105.x. PMID: 12562363

Cardaropoli G, Araújo M, Lindhe J (2003) Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs. J Clin Periodontol. ;30(9):809 – 18. https://doi.org/10.1034/j.1600-051x.2003.00366.x. PMID: 12956657

Araújo MG, Lindhe J (2005) Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol. ;32(2):212-8. https://doi.org/10.1111/j.1600-051X.2005.00642.x. PMID: 15691354

Scala A, Lang NP, Schweikert MT, de Oliveira JA, Rangel-Garcia I Jr, Botticelli D (2014) Sequential healing of open extraction sockets. An experimental study in monkeys. Clin Oral Implants Res. ;25(3):288–295. https://doi.org/10.1111/clr.12148. Epub 2013 Apr 1. PMID: 23551527

Akimoto K, Becker W, Persson R, Baker DA, Rohrer MD, O’Neal RB (1999 May-Jun) Evaluation of titanium implants placed into simulated extraction sockets: a study in dogs. Int J Oral Maxillofac Implants 14(3):351–360 PMID: 10379108

Botticelli D, Berglundh T, Persson LG, Lindhe J (2005) Bone regeneration at implants with turned or rough surfaces in self-contained defects. An experimental study in the dog. J Clin Periodontol. ;32(5):448 – 55. https://doi.org/10.1111/j.1600-051X.2005.00693.x. PMID: 15842258

Li J, Zheng Y, Yu Z, Kankala RK, Lin Q, Shi J, Chen C, Luo K, Chen A, Zhong Q (2023) Surface-modified titanium and titanium-based alloys for improved osteogenesis: a critical review. Heliyon 10(1):e23779 PMID: 38223705; PMCID: PMC10784177

Article  PubMed  PubMed Central  Google Scholar 

Liang J, Lu X, Zheng X, Li YR, Geng X, Sun K, Cai H, Jia Q, Jiang HB, Liu K (2023) Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies. Front Bioeng Biotechnol 11:1269223. https://doi.org/10.3389/fbioe.2023.1269223PMID: 38033819; PMCID: PMC10686101

Article  PubMed  PubMed Central  Google Scholar 

Yang S, Jiang W, Ma X, Wang Z, Sah RL, Wang J, Sun Y (2023) Nanoscale morphologies on the surface of 3D-Printed Titanium implants for Improved Osseointegration: a systematic review of the literature. Int J Nanomed 18:4171–4191 PMID: 37525692; PMCID: PMC10387278

Article  CAS  Google Scholar 

Scarano A, Orsini T, Di Carlo F, Valbonetti L, Lorusso F (2021) Graphene-Doped Poly (Methyl-Methacrylate) (Pmma) implants: a Micro-CT and histomorphometrical study in rabbits. Int J Mol Sci 22(3):1441. https://doi.org/10.3390/ijms22031441PMID: 33535482; PMCID: PMC7867091

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahmani R, Lyubartsev AP (2023) Biomolecular Adsorprion at ZnS nanomaterials: a Molecular Dynamics Simulation Study of the Adsorption preferences, effects of the Surface curvature and coating. Nanomaterials (Basel) 13(15):2239. https://doi.org/10.3390/nano13152239PMID: 37570556; PMCID: PMC10421200

Article  CAS  PubMed  Google Scholar 

Araújo MG, Sonohara M, Hayacibara R, Cardaropoli G, Lindhe J (2002) Lateral ridge augmentation by the use of grafts comprised of autologous bone or a biomaterial. An experiment in the dog. J Clin Periodontol. ;29(12):1122-31. https://doi.org/10.1034/j.1600-051x.2002.291213.x. PMID: 12492915

Santis E, Lang NP, Favero G, Beolchini M, Morelli F, Botticelli D (2015) Healing at mandibular block-grafted sites. An experimental study in dogs. Clin Oral Implants Res 26(5):516–522. https://doi.org/10.1111/clr.12434Epub 2014 Jun 12. PMID: 24921198

Article  PubMed  Google Scholar 

Kanayama M, Botticelli D, Apaza Alccayhuaman KA, Yonezawa D, Silva ER, Xavier SP (2021) Jul-Aug;36(4):703–714 The Impact on the Healing of Bioactivation with Argon Plasma of a Xenogeneic Graft with Adequate Fixation but Poor Adaptation to the Recipient Site: An Experimental Study in Rabbits. Int J Oral Maxillofac Implants. https://doi.org/10.11607/jomi.8695. PMID: 34411209

Herford AS, Boyne PJ (2008) Reconstruction of mandibular continuity defects with bone morphogenetic protein-2 (rhBMP-2). J Oral Maxillofac Surg 66:616–624

Article  PubMed  Google Scholar 

Chim H, Gosain AK (2009) Biomaterials in craniofacial surgery: experimental studies and clinical application. J Craniofac Surg 20:29–33

Article  PubMed  Google Scholar 

Misch CE, Qu Z, Bidez MW (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 57:700–706 discussion 706-8

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif