Performance estimation of super combined DWDM system employing machine learning

S. Kaur, All optical data comparator and decoder using SOA-based Mach-Zehnder interferometer. Optik-Int. J. Light Electron Opt. 124(17), 2650–2653 (2013)

Article  Google Scholar 

G.P. Agrawal, Fiber-optic communication systems. John Wiley & Sons (2012)

Anurupa, S. Kaur, Y. Malhotra, Performance evaluation and comparative study of novel high and flat gain C+ L band Raman+ EYDFA co-doped fibre hybrid optical amplifier with EYDFA only amplifier for 100 channels SD-WDM systems. Opt. Fiber Technol. 53, 102016 (2019)

Article  Google Scholar 

A. Lubana, S. Kaur, FWM crosstalk reduction and performance investigation of SC-DWDM system employing ML techniques. Opt. Fiber Technol. 78, 103304 (2023)

Article  Google Scholar 

K. Inoue, Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. J. Lightwave Technol. 10(11), 1553–1561 (1992)

Article  ADS  Google Scholar 

F. Ali et al., Modeling and minimization of FWM effects in DWDM-based long-haul optical communication systems. Photon Netw. Commun. 41, 36–46 (2021)

Article  Google Scholar 

H.U. Manzoor et al., FWM mitigation in DWDM optical networks. J. Phys. Conf. Ser. (2020). https://doi.org/10.1088/1742-6596/1447/1/012033

Article  Google Scholar 

F. Forghieri et al., Repeaterless transmission of eight channels at 10 Gb/s over 137 km (11 Tb/s-km) of dispersion-shifted fiber using unequal channel spacing. IEEE Photon. Technol. Lett. 6(11), 1374–1376 (1994)

Article  ADS  Google Scholar 

S.P. Singh, S. Kar, V.K. Jain, Novel strategies for reducing FWM using modified repeated unequally spaced channel allocation. Fiber Integr. Opt. 23(6), 415–437 (2004)

Article  ADS  Google Scholar 

G. Kumar, C. Kumar, Performance optimization of DPSK and QPSK for super dense wavelength division multiplexing system. Fluct. Noise Lett. 20(01), 2150005 (2021)

Article  ADS  Google Scholar 

T. Sabapathi, R. Poovitha, Mitigation of nonlinearities in fiber optic DWDM system. Optik 185, 657–664 (2019)

Article  Google Scholar 

B. Zhu, Advanced topics on Er-and ErYb-doped fibers for fiber amplifiers and lasers. Passive Comp. Fiber-based Dev. V. (2008). https://doi.org/10.1117/12.803368

Article  Google Scholar 

Y. Zhang et al., Fast adaptation of multi-task meta-learning for optical performance monitoring. Opt. Express 31(14), 23183–23197 (2023)

Article  ADS  Google Scholar 

S. Kulandaivel, R.K. Jeyachitra, Combined image Hough transform based simultaneous multi-parameter optical performance monitoring for intelligent optical networks. Opt. Fiber Technol. (2023). https://doi.org/10.1016/j.yofte.2023.103357

Article  Google Scholar 

M.A. Amirabadi et al., Improving MDM–WDM optical network performance via optimized power allocation using Gaussian noise model. Opt. Fiber Technol. 75, 103187 (2023)

Article  Google Scholar 

Y. Zhou et al., An artificial intelligence model based on multi-step feature engineering and deep attention network for optical network performance monitoring. Optik 273, 170443 (2023)

Article  ADS  Google Scholar 

A. Masih, G. Kaur, Machine learning-based regression models for predicting signal quality of dense wavelength division multiplexing (DWDM) optical communication network. Int. J. Commun. Syst. (2023). https://doi.org/10.1002/dac.5518

Article  Google Scholar 

S. Zhu, C.L. Gutterman, W. Mo, Y. Li, G. Zussman, and D.C. Kilper, Machine learning based prediction of erbium-doped fiber WDM line amplifier gain spectra. In European Conference on Optical Communication (ECOC), Rome, Italy (2018)

Y. You, Z. Jiang, and C. Janz, Machine learning-based EDFA gain model. In European Conference on Optical Communication (ECOC), Rome, Italy (2018)

M. Freire, S. Mansfeld, D. Amar, F. Gillet, A. Lavignotte, and C. Lepers, Predicting optical power excursions in erbium doped fiber amplifiers using neural networks. In Asia Communications Conference (ACP), Hangzhou, China (2018)

S. Zhu, C. Gutterman, A.D. Montiel, J. Yu, M. Ruffini, G. Zussman, and D. Kilper, Hybrid machine learning EDFA model. In Optical Fiber Communication Conference (OFC), San Diego, CA (2020)

M. Ionescu, Machine learning for ultrawide bandwidth amplifier configuration. In International Conference on Transparent Optical Networks (ICTON), Angers, France (2019)

A.M.R. Brusin, U.C. de Moura, V. Curri, D. Zibar, A. Carena, Introducing load aware neural networks for accurate predictions of Raman amplifiers. J. Lightwave Technol. 38, 6481–6491 (2020)

Article  ADS  Google Scholar 

J. Mata, I. de Miguel, R.J. Durán, J.C. Aguado, N. Merayo, L. Ruiz, P. Fernández, R.M. Lorenzo, and E. J. Abril, A SVM approach for lightpath QoT estimation in optical transport networks. In IEEE BigData, Boston, MA, pp. 4795–4797(2017).

T. Panayiotou, S.P. Chatzis, G. Ellinas, Performance analysis of a data-driven quality-of-transmission decision approach on a dynamic multicast-capable metro optical network. J. Opt. Commun. Netw. 9, 98–108 (2017)

Article  Google Scholar 

Comments (0)

No login
gif