FASnI3 and FAMASnGeI3 as absorbers with TCOs as ETLs for eco-friendly high-performance perovskite solar cells

S.G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A.J. Barker, F. De Angelis, A. Petrozza, Defect Activity in Lead Halide Perovskites. Adv. Mater. 31, 1–11 (2019). https://doi.org/10.1002/adma.201901183

Article  Google Scholar 

Singh, P., Kumar, A.: Device Engineering of Highly ‑ Efficient Eco ‑ Friendly Novel ­ FASnI 3 Based Tandem Photovoltaic Cells. Silicon. 16,  687–701 (2024). https://doi.org/10.1007/s12633-023-02717-8

Singh, P., Kumar, A.: Device engineering of double perovskite based solar cells towards high-performance, eco-friendly solar cells. Opt. Quantum Electron. 55, (2023)(b). https://doi.org/10.1007/s11082-023-04580-8

Yin, W.J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, (2014). https://doi.org/10.1063/1.4864778

P. Kumar, A. Kumar, High - performance optimization and analysis of ­ Cs 2 AgBiBr 6 - based lead - free double perovskite solar cells. J Mater Sci Mater Electron. 34, 1–15 (2023). https://doi.org/10.1007/s10854-023-11225-9

Article  Google Scholar 

T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong, Y. Zhang, L.K. Ono, Y. Qi, L. Han, Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Lett. 14, 1–14 (2022). https://doi.org/10.1007/s40820-022-00842-4

Article  ADS  Google Scholar 

X. Zhang, H. Zhou, C. Hu, Y. Zhao, X. Ma, J. Wu, Y. Qi, W. Fang, S. Jia, J. Yu, Performance analysis of all-inorganic Cs3Sb2I9 perovskite solar cells with micro-offset energy level structure by SCAPS-1D simulation and First-principles calculation. Sol. Energy Mater. Sol. Cells 260, 1–14 (2023). https://doi.org/10.1016/j.solmat.2023.112487

Article  Google Scholar 

Serhan, M., Sprowls, M., Jackemeyer, D., Long, M., Perez, I.D., Maret, W., Tao, N., Forzani, E.: Total iron measurement in human serum with a smartphone. AIChE Annu. Meet. Conf. Proc. 2019-Novem, 2012–2014 (2019). https://doi.org/10.1039/x0xx00000x

D. Umadevi, G.W. Watson, Quasiparticle GW Calculations on Lead-Free Hybrid Germanium Iodide Perovskite CH 3 NH 3 GeI 3 for Photovoltaic Applications. ACS Omega 4, 5661–5669 (2019). https://doi.org/10.1021/acsomega.8b03291

Article  Google Scholar 

Hima, A., Lakhdar, N.: Enhancement of efficiency and stability of CH3NH3GeI3 solar cells with CuSbS2. Opt. Mater. (Amst). 99, (2020). https://doi.org/10.1016/j.optmat.2019.109607

Z. Li, R. Wang, J. Xue, X. Xing, C. Yu, T. Huang, J. Chu, K.L. Wang, C. Dong, Z. Wei, Y. Zhao, Z.K. Wang, Y. Yang, Core-Shell ZnO@SnO2 Nanoparticles for Efficient Inorganic Perovskite Solar Cells. J. Am. Chem. Soc. 141, 17610–17616 (2019). https://doi.org/10.1021/jacs.9b06796

Article  Google Scholar 

N. Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. J. Phys. Chem. Lett. 9, 1682–1688 (2018). https://doi.org/10.1021/acs.jpclett.8b00275

Article  Google Scholar 

Minemoto, T., Kawano, Y., Nishimura, T., Shen, Q., Yoshino, K., Iikubo, S., Hayase, S., Chantana, J.: Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Sol. Energy Mater. Sol. Cells. 206, (2020). https://doi.org/10.1016/j.solmat.2019.110268

N.K. Singh, A. Agarwal, A.K. Singh, S.N. Singh, Design and performance evaluation of eco-friendly FASnI3/CsSn0.5Ge0.5I3 based perovskite solar cell with distinct charge transport layer: A computational modeling. Sol. Energy. 268, 112256 (2024). https://doi.org/10.1016/j.solener.2023.112256

Article  ADS  Google Scholar 

Saranya, K., Janarthanan, B.: Progress and challenges of lead free halide perovskite materials for perovskite solar cell applications. J. Mol. Struct. 1287, (2023). https://doi.org/10.1016/j.molstruc.2023.135663

Bhattarai, S., Mohammed, M.K.A., Madan, J., Pandey, R., Ansari, M.Z., Zaki Rashed, A.N., Amami, M., Hossain, M.K.: Performance Improvement of Perovskite Solar Cell Design with Double Active Layer to Achieve an Efficiency of over 31%. Sustain. 15, (2023). https://doi.org/10.3390/su151813955

A. Hosen, M.S. Mian, S.R. Ahmed, Al: Improving the Performance of Lead-Free FASnI3-Based Perovskite Solar Cell with Nb2O5 as an Electron Transport Layer. Adv. Theory Simulations. 6, 1–13 (2023). https://doi.org/10.1002/adts.202200652

Article  Google Scholar 

S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Seok, Il: Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex. J. Am. Chem. Soc. 138, 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142

Article  Google Scholar 

W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang, A.J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.G. Xiong, Y. Yan, Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016). https://doi.org/10.1002/adma.201602992

Article  Google Scholar 

Singh, N.K., Agarwal, A.: Performance assessment of sustainable highly efficient CsSn0.5Ge0.5I3/FASnI3 based Perovskite Solar Cell: A numerical modelling approach. Opt. Mater. (Amst). 139, (2023). https://doi.org/10.1016/j.optmat.2023.113822

R. Wang, J. Wang, S. Tan, Y. Duan, Z.K. Wang, Y. Yang, Opportunities and Challenges of Lead-Free Perovskite Optoelectronic Devices. Trends Chem. 1, 368–379 (2019). https://doi.org/10.1016/j.trechm.2019.04.004

Article  Google Scholar 

R. Shukla, R.R. Kumar, D. Punetha, S.K. Pandey, Design Perspective, Fabrication, and Performance Analysis of Formamidinium Tin Halide Perovskite Solar Cell. IEEE J. Photovoltaics. 13, 404–410 (2023). https://doi.org/10.1109/JPHOTOV.2023.3241793

Article  Google Scholar 

El Arfaoui, Y., Khenfouch, M., Habiballah, N.: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, (2023). https://doi.org/10.1016/j.rio.2023.100554

Raghvendra, Kumar, R.R., Pandey, S.K.: Performance evaluation and material parameter perspective of eco-friendly highly efficient CsSnGeI3 perovskite solar cell. Superlattices Microstruct. 135, (2019). https://doi.org/10.1016/j.spmi.2019.106273

T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong, Y. Zhang, L.K. Ono, Y. Qi, L. Han, Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Lett. 14, 1–14 (2022). https://doi.org/10.1007/s40820-022-00842-4

Article  ADS  Google Scholar 

Zhu, Z., Jiang, X., Yu, D., Yu, N., Ning, Z., Mi, Q.: Smooth and Compact FASnI3Films for Lead-Free Perovskite Solar Cells with over 14% Efficiency. ACS Energy Lett. 2079–2083 (2022). https://doi.org/10.1021/acsenergylett.2c00776

H. Abedini-Ahangarkola, S. Soleimani-Amiri, S. Gholami Rudi, Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers. Sol. Energy 236, 724–732 (2022). https://doi.org/10.1016/j.solener.2022.03.055

Article  ADS  Google Scholar 

R. Shukla, R.R. Kumar, S.K. Pandey, Theoretical Study of Charge Carrier Lifetime and Recombination on the Performance of Eco-Friendly Perovskite Solar Cell. IEEE Trans. Electron Devices 68, 3446–3452 (2021). https://doi.org/10.1109/TED.2021.3078063

Article  ADS  Google Scholar 

S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A. 8, 12201–12225 (2020). https://doi.org/10.1039/d0ta03957h

Article  Google Scholar 

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

Article  Google Scholar 

F. Azri, A. Meftah, N. Sengouga, A. Meftah, (Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy. 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017

Article  ADS  Google Scholar 

A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration. Crystals 10, 386 (2020). https://doi.org/10.3390/cryst10050386

Article  Google Scholar 

Z. Cao, C. Li, X. Deng, S. Wang, Y. Yuan, Y. Chen, Z. Wang, Y. Liu, L. Ding, F. Hao, Metal oxide alternatives for efficient electron transport in perovskite solar cells: Beyond TiO2and SnO2. J. Mater. Chem. A. 8, 19768–19787 (2020). https://doi.org/10.1039/d0ta07282f

Article  Google Scholar 

Lee, J., Kim, J., Kim, C.S., Jo, S.: Compact SnO2 /Mesoporous TiO2 Bilayer Electron Transport Layer for Perovskite Solar Cells Fabricated at Low Process Temperature. Nanomaterials. 12, (2022). https://doi.org/10.3390/nano12040718

Qiu, L., Liu, Z., Ono, L.K., Jiang, Y., Son, D.Y., Hawash, Z., He, S., Qi, Y.: Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer. Adv. Funct. Mater. 29, (2019). https://doi.org/10.1002/adfm.201806779

J. You, L. Meng, T. Bin. Song, T.F. Guo, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016). https://doi.org/10.1038/nnano.2015.230

Article  ADS  Google Scholar 

Zhao, Z., Gu, F., Li, Y., Sun, W., Ye, S., Rao, H., Liu, Z., Bian, Z., Huang, C.: Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Adv. Sci. 4, (2017). https://doi.org/10.1002/advs.201700204

Niemegeers, A., Burgelman, M.: Numerical modelling of ac-characteristics of CdTe and CIS solar cells. Conf. Rec. IEEE Photovolt. Spec. Conf. 901–904 (1996). https://doi.org/10.1109/pvsc.1996.564274

G. Pindolia, S.M. Shinde, P.K. Jha, Optimization of an inorganic lead free RbGeI 3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy 236, 802–821 (2022)

Article  ADS  Google Scholar 

F. Azri, A. Meftah, N. Sengouga, A. Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy. 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017

Article  ADS  Google Scholar 

Bansal, S., Aryal, P.: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. 2017 IEEE 44th Photovolt. Spec. Conf. PVSC 2017. 3220–3223 (2017). https://doi.org/10.1109/PVSC.2017.8366107

Chakraborty, K., Choudhury, M.G., Paul, S.: Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation, (2019)

N. Lakhdar, A. Hima, (Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020). https://doi.org/10.1016/j.optmat.2019.109517

Article  Google Scholar 

K. Chakraborty, M.G. Choudhury, S. Paul, Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation. Sol. Energy. 194, 886–892 (2019). https://doi.org/10.1016/j.solener.2019.11.005

Article  ADS  Google Scholar 

Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy. 207, 579–591 (2020). https://doi.org/10.1016/j.solener.2020.07.012

Article  ADS  Google Scholar 

T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A.C. Grimsdale, S.G. Mhaisalkar, N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A. 3, 14996–15000 (2015). https://doi.org/10.1039/c5ta00190k

Article  Google Scholar 

S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020). https://doi.org/10.1016/j.optmat.2020.109738

Article  Google Scholar 

F. Jafarzadeh, H. Aghili, H. Nikbakht, S. Javadpour, Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Sol. Energy 236, 195–205 (2022). https://doi.org/10.1016/j.solener.2022.01.046

Article  ADS  Google Scholar 

Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy. 207, 579–591 (2020). https://doi.org/10.1016/j.solener.2020.07.012

Article  ADS  Google Scholar 

N. Rai, S. Rai, P.K. Singh, P. Lohia, D.K. Dwivedi, Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 31, 16269–16280 (2020). https://doi.org/10.1007/s10854-020-04175-z

Article  Google Scholar 

Salem, M.S., Shaker, A., Othman, M.S., Al-Bagawia, A.H., Fedawy, M., Aleid, G.M.: Numerical analysis and design of high performance HTL-free antimony sulfide solar cells by SCAPS-1D. Opt. Mater. (Amst). 123, (2022). https://doi.org/10.1016/j.optmat.2021.111880

A.T. Ngoupo, S. Ouédraogo, F. Zougmoré, J.M.B. Ndjaka, Numerical analysis of ultrathin Sb2Se3-based solar cells by SCAPS-1D numerical simulator device. Chinese J. Phys. 70, 1–13 (2021). https://doi.org/10.1016/j.cjph.2020.12.010

Comments (0)

No login
gif