S.G. Motti, D. Meggiolaro, S. Martani, R. Sorrentino, A.J. Barker, F. De Angelis, A. Petrozza, Defect Activity in Lead Halide Perovskites. Adv. Mater. 31, 1–11 (2019). https://doi.org/10.1002/adma.201901183
Singh, P., Kumar, A.: Device Engineering of Highly ‑ Efficient Eco ‑ Friendly Novel FASnI 3 Based Tandem Photovoltaic Cells. Silicon. 16, 687–701 (2024). https://doi.org/10.1007/s12633-023-02717-8
Singh, P., Kumar, A.: Device engineering of double perovskite based solar cells towards high-performance, eco-friendly solar cells. Opt. Quantum Electron. 55, (2023)(b). https://doi.org/10.1007/s11082-023-04580-8
Yin, W.J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, (2014). https://doi.org/10.1063/1.4864778
P. Kumar, A. Kumar, High - performance optimization and analysis of Cs 2 AgBiBr 6 - based lead - free double perovskite solar cells. J Mater Sci Mater Electron. 34, 1–15 (2023). https://doi.org/10.1007/s10854-023-11225-9
T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong, Y. Zhang, L.K. Ono, Y. Qi, L. Han, Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Lett. 14, 1–14 (2022). https://doi.org/10.1007/s40820-022-00842-4
X. Zhang, H. Zhou, C. Hu, Y. Zhao, X. Ma, J. Wu, Y. Qi, W. Fang, S. Jia, J. Yu, Performance analysis of all-inorganic Cs3Sb2I9 perovskite solar cells with micro-offset energy level structure by SCAPS-1D simulation and First-principles calculation. Sol. Energy Mater. Sol. Cells 260, 1–14 (2023). https://doi.org/10.1016/j.solmat.2023.112487
Serhan, M., Sprowls, M., Jackemeyer, D., Long, M., Perez, I.D., Maret, W., Tao, N., Forzani, E.: Total iron measurement in human serum with a smartphone. AIChE Annu. Meet. Conf. Proc. 2019-Novem, 2012–2014 (2019). https://doi.org/10.1039/x0xx00000x
D. Umadevi, G.W. Watson, Quasiparticle GW Calculations on Lead-Free Hybrid Germanium Iodide Perovskite CH 3 NH 3 GeI 3 for Photovoltaic Applications. ACS Omega 4, 5661–5669 (2019). https://doi.org/10.1021/acsomega.8b03291
Hima, A., Lakhdar, N.: Enhancement of efficiency and stability of CH3NH3GeI3 solar cells with CuSbS2. Opt. Mater. (Amst). 99, (2020). https://doi.org/10.1016/j.optmat.2019.109607
Z. Li, R. Wang, J. Xue, X. Xing, C. Yu, T. Huang, J. Chu, K.L. Wang, C. Dong, Z. Wei, Y. Zhao, Z.K. Wang, Y. Yang, Core-Shell ZnO@SnO2 Nanoparticles for Efficient Inorganic Perovskite Solar Cells. J. Am. Chem. Soc. 141, 17610–17616 (2019). https://doi.org/10.1021/jacs.9b06796
N. Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. J. Phys. Chem. Lett. 9, 1682–1688 (2018). https://doi.org/10.1021/acs.jpclett.8b00275
Minemoto, T., Kawano, Y., Nishimura, T., Shen, Q., Yoshino, K., Iikubo, S., Hayase, S., Chantana, J.: Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted p-i-n structure. Sol. Energy Mater. Sol. Cells. 206, (2020). https://doi.org/10.1016/j.solmat.2019.110268
N.K. Singh, A. Agarwal, A.K. Singh, S.N. Singh, Design and performance evaluation of eco-friendly FASnI3/CsSn0.5Ge0.5I3 based perovskite solar cell with distinct charge transport layer: A computational modeling. Sol. Energy. 268, 112256 (2024). https://doi.org/10.1016/j.solener.2023.112256
Saranya, K., Janarthanan, B.: Progress and challenges of lead free halide perovskite materials for perovskite solar cell applications. J. Mol. Struct. 1287, (2023). https://doi.org/10.1016/j.molstruc.2023.135663
Bhattarai, S., Mohammed, M.K.A., Madan, J., Pandey, R., Ansari, M.Z., Zaki Rashed, A.N., Amami, M., Hossain, M.K.: Performance Improvement of Perovskite Solar Cell Design with Double Active Layer to Achieve an Efficiency of over 31%. Sustain. 15, (2023). https://doi.org/10.3390/su151813955
A. Hosen, M.S. Mian, S.R. Ahmed, Al: Improving the Performance of Lead-Free FASnI3-Based Perovskite Solar Cell with Nb2O5 as an Electron Transport Layer. Adv. Theory Simulations. 6, 1–13 (2023). https://doi.org/10.1002/adts.202200652
S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Seok, Il: Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex. J. Am. Chem. Soc. 138, 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang, A.J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.G. Xiong, Y. Yan, Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
Singh, N.K., Agarwal, A.: Performance assessment of sustainable highly efficient CsSn0.5Ge0.5I3/FASnI3 based Perovskite Solar Cell: A numerical modelling approach. Opt. Mater. (Amst). 139, (2023). https://doi.org/10.1016/j.optmat.2023.113822
R. Wang, J. Wang, S. Tan, Y. Duan, Z.K. Wang, Y. Yang, Opportunities and Challenges of Lead-Free Perovskite Optoelectronic Devices. Trends Chem. 1, 368–379 (2019). https://doi.org/10.1016/j.trechm.2019.04.004
R. Shukla, R.R. Kumar, D. Punetha, S.K. Pandey, Design Perspective, Fabrication, and Performance Analysis of Formamidinium Tin Halide Perovskite Solar Cell. IEEE J. Photovoltaics. 13, 404–410 (2023). https://doi.org/10.1109/JPHOTOV.2023.3241793
El Arfaoui, Y., Khenfouch, M., Habiballah, N.: Efficient all lead-free perovskite solar cell simulation of FASnI3/FAGeCl3 with 30% efficiency: SCAPS-1D investigation. Results Opt. 13, (2023). https://doi.org/10.1016/j.rio.2023.100554
Raghvendra, Kumar, R.R., Pandey, S.K.: Performance evaluation and material parameter perspective of eco-friendly highly efficient CsSnGeI3 perovskite solar cell. Superlattices Microstruct. 135, (2019). https://doi.org/10.1016/j.spmi.2019.106273
T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong, Y. Zhang, L.K. Ono, Y. Qi, L. Han, Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Lett. 14, 1–14 (2022). https://doi.org/10.1007/s40820-022-00842-4
Zhu, Z., Jiang, X., Yu, D., Yu, N., Ning, Z., Mi, Q.: Smooth and Compact FASnI3Films for Lead-Free Perovskite Solar Cells with over 14% Efficiency. ACS Energy Lett. 2079–2083 (2022). https://doi.org/10.1021/acsenergylett.2c00776
H. Abedini-Ahangarkola, S. Soleimani-Amiri, S. Gholami Rudi, Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers. Sol. Energy 236, 724–732 (2022). https://doi.org/10.1016/j.solener.2022.03.055
R. Shukla, R.R. Kumar, S.K. Pandey, Theoretical Study of Charge Carrier Lifetime and Recombination on the Performance of Eco-Friendly Perovskite Solar Cell. IEEE Trans. Electron Devices 68, 3446–3452 (2021). https://doi.org/10.1109/TED.2021.3078063
S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J. Mater. Chem. A. 8, 12201–12225 (2020). https://doi.org/10.1039/d0ta03957h
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
F. Azri, A. Meftah, N. Sengouga, A. Meftah, (Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy. 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017
A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, M.A. Almessiere, Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration. Crystals 10, 386 (2020). https://doi.org/10.3390/cryst10050386
Z. Cao, C. Li, X. Deng, S. Wang, Y. Yuan, Y. Chen, Z. Wang, Y. Liu, L. Ding, F. Hao, Metal oxide alternatives for efficient electron transport in perovskite solar cells: Beyond TiO2and SnO2. J. Mater. Chem. A. 8, 19768–19787 (2020). https://doi.org/10.1039/d0ta07282f
Lee, J., Kim, J., Kim, C.S., Jo, S.: Compact SnO2 /Mesoporous TiO2 Bilayer Electron Transport Layer for Perovskite Solar Cells Fabricated at Low Process Temperature. Nanomaterials. 12, (2022). https://doi.org/10.3390/nano12040718
Qiu, L., Liu, Z., Ono, L.K., Jiang, Y., Son, D.Y., Hawash, Z., He, S., Qi, Y.: Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer. Adv. Funct. Mater. 29, (2019). https://doi.org/10.1002/adfm.201806779
J. You, L. Meng, T. Bin. Song, T.F. Guo, W.H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016). https://doi.org/10.1038/nnano.2015.230
Zhao, Z., Gu, F., Li, Y., Sun, W., Ye, S., Rao, H., Liu, Z., Bian, Z., Huang, C.: Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%. Adv. Sci. 4, (2017). https://doi.org/10.1002/advs.201700204
Niemegeers, A., Burgelman, M.: Numerical modelling of ac-characteristics of CdTe and CIS solar cells. Conf. Rec. IEEE Photovolt. Spec. Conf. 901–904 (1996). https://doi.org/10.1109/pvsc.1996.564274
G. Pindolia, S.M. Shinde, P.K. Jha, Optimization of an inorganic lead free RbGeI 3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy 236, 802–821 (2022)
F. Azri, A. Meftah, N. Sengouga, A. Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy. 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017
Bansal, S., Aryal, P.: Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. 2017 IEEE 44th Photovolt. Spec. Conf. PVSC 2017. 3220–3223 (2017). https://doi.org/10.1109/PVSC.2017.8366107
Chakraborty, K., Choudhury, M.G., Paul, S.: Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation, (2019)
N. Lakhdar, A. Hima, (Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020). https://doi.org/10.1016/j.optmat.2019.109517
K. Chakraborty, M.G. Choudhury, S. Paul, Numerical study of Cs2TiX6 (X = Br−, I−, F− and Cl−) based perovskite solar cell using SCAPS-1D device simulation. Sol. Energy. 194, 886–892 (2019). https://doi.org/10.1016/j.solener.2019.11.005
Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy. 207, 579–591 (2020). https://doi.org/10.1016/j.solener.2020.07.012
T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A.C. Grimsdale, S.G. Mhaisalkar, N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A. 3, 14996–15000 (2015). https://doi.org/10.1039/c5ta00190k
S. Abdelaziz, A. Zekry, A. Shaker, M. Abouelatta, Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020). https://doi.org/10.1016/j.optmat.2020.109738
F. Jafarzadeh, H. Aghili, H. Nikbakht, S. Javadpour, Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Sol. Energy 236, 195–205 (2022). https://doi.org/10.1016/j.solener.2022.01.046
Y.H. Khattak, F. Baig, A. Shuja, S. Beg, B.M. Soucase, Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell. Sol. Energy. 207, 579–591 (2020). https://doi.org/10.1016/j.solener.2020.07.012
N. Rai, S. Rai, P.K. Singh, P. Lohia, D.K. Dwivedi, Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 31, 16269–16280 (2020). https://doi.org/10.1007/s10854-020-04175-z
Salem, M.S., Shaker, A., Othman, M.S., Al-Bagawia, A.H., Fedawy, M., Aleid, G.M.: Numerical analysis and design of high performance HTL-free antimony sulfide solar cells by SCAPS-1D. Opt. Mater. (Amst). 123, (2022). https://doi.org/10.1016/j.optmat.2021.111880
A.T. Ngoupo, S. Ouédraogo, F. Zougmoré, J.M.B. Ndjaka, Numerical analysis of ultrathin Sb2Se3-based solar cells by SCAPS-1D numerical simulator device. Chinese J. Phys. 70, 1–13 (2021). https://doi.org/10.1016/j.cjph.2020.12.010
Comments (0)