Nonlinear surface waves propagating along an interface between the Kerr nonlinear and hyperbolic graded-index crystals

S. Hod, Propagation and scattering of waves in inhomogeneous optical media. J. Opt. 15(10), 105702 (2013). https://doi.org/10.1088/2040-8978/15/10/105702

Article  ADS  Google Scholar 

V.I. Kruglov, H. Triki, Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening nonlinearity. Phys. Rev. A 103(1), 013521 (2021). https://doi.org/10.1103/PhysRevA.103.013521

Article  ADS  MathSciNet  Google Scholar 

W.-P. Zhong, Z. Yang, M. Belić, W.Y. Zhong, Controllable optical rogue waves in inhomogeneous media. Phys. Lett. A 453, 128469 (2022). https://doi.org/10.1016/j.physleta.2022.128469

Article  MathSciNet  Google Scholar 

J.W. You, S.R. Bongu, Q. Bao, N.C. Panoiu, Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 8(1), 63–97 (2019). https://doi.org/10.1515/nanoph-2018-0106

Article  Google Scholar 

Y. Li, H. Sun, L. Gan, J. Zhang, J. Feng, D. Zhang, C.-Z. Ning, Optical Properties and Light-Emission Device Applications of 2-D Layered Semiconductors. In Proceedings of the IEEE 108(5), 676–703 (2020). https://doi.org/10.1109/JPROC.2019.2936424

Article  Google Scholar 

C-L. Chen, Foundations for guided-wave optics (John Wiley & Sons, Inc., 2005) p. 462, https://doi.org/10.1002/0470042222

A. B. Shvartsburg, A. Maradudin, Waves in gradient metamaterials. (World Scientific, Singapore, 2013), p. 339, https://doi.org/10.1142/8649

M.J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, 1981)

Google Scholar 

B.K. Singh, V. Bambole, S. Tiwari, K.K. Shukla, P.C. Pandey, V. Rastogi, Photonic band gap consequences in one-dimensional exponential graded index photonic crystals. Optik 240, 166854 (2021). https://doi.org/10.1016/j.ijleo.2021.166854

Article  ADS  Google Scholar 

D. Dash, J. Saini, A.K. Goyal, Y. Massoud, Exponentially index modulated nanophotonic resonator for high-performance sensing applications. Sci. Rep. 13, 1431 (2023). https://doi.org/10.1038/s41598-023-28235-6

Article  ADS  Google Scholar 

B.K. Singh, A. Bijalwan, P.C. Pandey, V. Rastogi, Photonic bandgaps engineering in double graded hyperbolic, exponential and linear index materials embedded one-dimensional photonic crystals. Eng. Res. Express 1(2), 025004 (2019). https://doi.org/10.1088/2631-8695/ab48a0

Article  ADS  Google Scholar 

B.K. Singh, V. Bambole, V. Rastogi, P.C. Pandey, Multi-channel photonic bandgap engineering in hyperbolic graded index materials embedded one-dimensional photonic crystals. Opt. Laser Technol. 129, 106293 (2020). https://doi.org/10.1016/j.optlastec.2020.106293

Article  Google Scholar 

D. Dash, J. Saini, Hyperbolic Graded Index Biophotonic Cholesterol Sensor with Improved Sensitivity. Prog Electromagnet Res M 116, 165–176 (2023). https://doi.org/10.2528/PIERM23032302

Article  Google Scholar 

D. Dragoman, M. Dragoman, Advanced Optoelectronic devices (Springer, Berlin, 1999), p. 424

D.I. Khusyainov, A.V. Gorbatova, A.M. Buryakov, Terahertz generation from surface of the bulk and monolayer tungsten diselenide. Russian Technological Journal 8(6), 121–129 (2020). https://doi.org/10.32362/2500-316X-2020-8-6-121-129

Article  Google Scholar 

P. Yeh, Optical wave in layered media (Wiley, New Jersey, 1988)

T. Touam, F. Yergeau, Analytical solution for a linearly graded-index-profile planar waveguide. Appl. Opt. 32, 309–312 (1993). https://doi.org/10.1364/AO.32.000309

Article  ADS  Google Scholar 

S. Chatterjee, P.R. Chaudhuri, Some Unique Propagation Characteristics of Linearly Graded Multilayered Planar Optical Waveguides. Journal of Basic and Applied Physics 3(1), 1–9 (2014)

Google Scholar 

R.L. Lachance, P.-A. Belanger, Modes in divergent parabolic graded-index optical fibers. J. Lightwave Technol. 9(11), 1425–1430 (1991). https://doi.org/10.1109/50.97628

Article  ADS  Google Scholar 

M. H. Weik Parabolic refractive-index profile. In: Computer Science and Communications Dictionary. (Springer, Boston, MA., 2000), https://doi.org/10.1007/1-4020-0613-6_13593

S.E. Savotchenko, Surface waves propagating along the interface between a parabolic graded-index medium and a self-focusing nonlinear medium: exact analytical solution. J. Opt. 24(10), 105501 (2022). https://doi.org/10.1088/2040-8986/ac8e80

Article  ADS  Google Scholar 

S.-Y. Huang, S. Wang, Ray optics of a planar waveguide with an exponential index profile. J. Appl. Phys. 55(4), 647–651 (1984). https://doi.org/10.1063/1.333117

Article  ADS  MathSciNet  Google Scholar 

A.M. Shutyi, D.I. Sementsov, A.V. Kazakevich, D.G. Sannikov, Waveguide regimes of a graded-index planar waveguide with cladding. Tech. Phys. 44(11), 1329–1333 (1999). https://doi.org/10.1134/1.1259518

Article  Google Scholar 

V. W. Biricik, Hyperbolic tangent graded-index antireflection coatings, Optical Society of America Annual Meeting, Technical Digest Series. (1991), ThMM52. https://doi.org/10.1364/OAM.1991.ThMM52.

M. Dalarsson, Y. Ivanenko, S. Nordebo, Wave propagation in waveguides with graded plasmonic obstacles. J. Opt. Soc. Am. B 38, 104–113 (2021). https://doi.org/10.1364/JOSAB.410092

Article  ADS  Google Scholar 

B. Rana, B.B. Svendsen, M. Dalarsson, TE-Wave Propagation Over an Impedance-Matched RHM to LHM Transition in a Hollow Waveguide. Progress Electromagnet Res M 110, 1–10 (2022). https://doi.org/10.2528/PIERM22022505

Article  Google Scholar 

K. Kim, Excitation of s-polarized surface electromagnetic waves in inhomogeneous dielectric media. Opt. Express 16(17), 13354–13363 (2008). https://doi.org/10.1364/OE.16.013354

Article  ADS  Google Scholar 

Z. Cao, Y. Jiang, Q. Shen, X. Dou, Y. Chen, Exact analytical method for planar optical waveguides with arbitrary index profile. J. Opt. Soc. Am. A 16(9), 2209–2212 (1999). https://doi.org/10.1364/JOSAA.16.002209

Article  ADS  MathSciNet  Google Scholar 

N.A. Kudryashov, Optical solitons of mathematical model with arbitrary refractive index. Optik 224, 165391 (2020). https://doi.org/10.1016/j.ijleo.2020.165391

Article  ADS  Google Scholar 

M. Bednarik, M. Cervenka, Electromagnetic waves in graded-index planar waveguides. J. Opt. Soc. Am. B 37, 3631–3643 (2020). https://doi.org/10.1364/JOSAB.408679

Article  ADS  Google Scholar 

A.H. Arnous, A. Biswas, Y. Yıldırım, A. Asiri, Quiescent Optical Solitons for the Concatenation Model Having Nonlinear Chromatic Dispersion with Differential Group Delay. Contemp. Math. 4(4), 877–904 (2023). https://doi.org/10.37256/cm.4420233596

Article  Google Scholar 

A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, A. Biswas, Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme. Ukrainian J. Phys. Opt. 23(4), 228–242 (2022). https://doi.org/10.3116/16091833/23/4/228/2022

Article  Google Scholar 

A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, A. Biswas, Dark and singular cubic-quartic optical solitons with Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme. Ukrainian J. Phys. Opt. 24(1), 46–61 (2023). https://doi.org/10.3116/16091833/24/1/46/2023

Article  ADS  Google Scholar 

E.M. Zayed, K.A. Gepreel, M. El-Horbaty, A. Biswas, Y. Yıldırım, H. Triki, A. Asiri, Optical solitons for the dispersive concatenation model. Contemp. Math. 4(3), 592–611 (2023). https://doi.org/10.37256/cm.4320233321

Article  Google Scholar 

A.H. Arnous, A. Biswas, Y. Yıldırım, L. Moraru, M. Aphane, S.P. Moshokoa, H.M. Alshehri, Quiescent optical solitons with Kudryashov’s generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution. Ukrainian J. Phys. Opt. 24(2), 105–113 (2023). https://doi.org/10.3116/16091833/24/2/105/2023

Article  ADS  Google Scholar 

E.M.E. Zayed, M.E.M. Alngar, R.M.A. Shohib, A. Biswas, Y. Yıldırım, L. Moraru, P.L. Georgescu, C. Iticescu, A. Asiri, Highly dispersive solitons in optical couplers with metamaterials having Kerr law of nonlinear refractive index. Ukrainian J. Phys. Opt. 25(1), 01001–01019 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.01001

Article  ADS  Google Scholar 

A. Adem, A. Biswas, Y. Yildirim, A. Jawad, A. Alshomrani, Implicit quiescent optical solitons for complex Ginzburg-Landau equation with generalized quadratic-cubic form of self-phase modulation and nonlinear chromatic dispersion by lie symmetry. Ukrainian Journal of Physical Optics. 25, 02036–02041 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02042

Article  ADS  Google Scholar 

P. Albayrak, M. Ozisik, M. Bayram, A. Secer, S.E. Das, A. Biswas, Y. Yıldırım, M. Mirzazadeh, A. Asiri, Pure-cubic optical solitons and stability analysis with Kerr law nonlinearity. Contemp. Math. 4(3), 530–548 (2023). https://doi.org/10.37256/cm.4320233308

Article  Google Scholar 

A.R. Adem, A. Biswas, Y. Yıldırım, A.J.M. Jawad, A.S. Alshomrani, Implicit quiescent optical solitons with generalized quadratic cubic form of self phase modulation and nonlinear chromatic dispersion by Lie symmetry. Ukrainian J. Phys. Opt. 25(2), 02016–02020 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02016

Article  ADS  Google Scholar 

A. Elsherbeny, A.H. Arnous, A.J.M. Jawad, A. Biswas, Y. Yıldırım, L. Moraru, A. Alshomrani, Quescent optical solitons for the dispersive concatenation model with Kerr law nonlinearity having nonlinear chromatic dispersion. Ukrainian J. Phys. Opt. 25(1), 01054–01064 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.01054

Article  Google Scholar 

A.R. Adem, A. Biswas, Y. Yıldırım, A.J.M. Jawad, A.S. Alshomrani, Implicit Quiescent Optical Solitons for Complex Ginzburg-Landau Equation with Generalized quadratic cubic Form of Self-Phase Modulation and Nonlinear Chromatic Dispersion by Lie Symmetry. Ukrainian J. Phys. Opt. 25(2), 02042–02047 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02043

Article  ADS  Google Scholar 

O. González-Gaxiola, A. Biswas, Y. Yildirim, A.J. Mohamad Jawad, Optical Solitons for the Dispersive Concatenation Model by Laplace-Adomian Decomposition. Ukr. J. Phys. Opt. 25(1), 01094–01105 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.01094

Article  Google Scholar 

E.M. Zayed, R. Shohib, M.E. Alngar, A. Biswas, Y. Yıldırım, A. Dakova, H.M. Alshehri, M.R. Belic, Optical solitons in the Sasa-Satsuma model with multiplicative noise via Itô calculus. Ukrainian J. Phys. Opt. 23(1), 9–14 (2022). https://doi.org/10.3116/16091833/23/1/9/2022

Article  Google Scholar 

E.M. Zayed, M.E. Alngar, R. Shohib, A. Biswas, Y. Yıldırım, C.M.B. Dragomir, Highly dispersive gap solitons in optical fibers with dispersive reflectivity having parabolic-nonlocal nonlinearity. Ukrainian J. Phys. Opt. 25(1)

Comments (0)

No login
gif