S. Hod, Propagation and scattering of waves in inhomogeneous optical media. J. Opt. 15(10), 105702 (2013). https://doi.org/10.1088/2040-8978/15/10/105702
V.I. Kruglov, H. Triki, Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening nonlinearity. Phys. Rev. A 103(1), 013521 (2021). https://doi.org/10.1103/PhysRevA.103.013521
Article ADS MathSciNet Google Scholar
W.-P. Zhong, Z. Yang, M. Belić, W.Y. Zhong, Controllable optical rogue waves in inhomogeneous media. Phys. Lett. A 453, 128469 (2022). https://doi.org/10.1016/j.physleta.2022.128469
Article MathSciNet Google Scholar
J.W. You, S.R. Bongu, Q. Bao, N.C. Panoiu, Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 8(1), 63–97 (2019). https://doi.org/10.1515/nanoph-2018-0106
Y. Li, H. Sun, L. Gan, J. Zhang, J. Feng, D. Zhang, C.-Z. Ning, Optical Properties and Light-Emission Device Applications of 2-D Layered Semiconductors. In Proceedings of the IEEE 108(5), 676–703 (2020). https://doi.org/10.1109/JPROC.2019.2936424
C-L. Chen, Foundations for guided-wave optics (John Wiley & Sons, Inc., 2005) p. 462, https://doi.org/10.1002/0470042222
A. B. Shvartsburg, A. Maradudin, Waves in gradient metamaterials. (World Scientific, Singapore, 2013), p. 339, https://doi.org/10.1142/8649
M.J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, 1981)
B.K. Singh, V. Bambole, S. Tiwari, K.K. Shukla, P.C. Pandey, V. Rastogi, Photonic band gap consequences in one-dimensional exponential graded index photonic crystals. Optik 240, 166854 (2021). https://doi.org/10.1016/j.ijleo.2021.166854
D. Dash, J. Saini, A.K. Goyal, Y. Massoud, Exponentially index modulated nanophotonic resonator for high-performance sensing applications. Sci. Rep. 13, 1431 (2023). https://doi.org/10.1038/s41598-023-28235-6
B.K. Singh, A. Bijalwan, P.C. Pandey, V. Rastogi, Photonic bandgaps engineering in double graded hyperbolic, exponential and linear index materials embedded one-dimensional photonic crystals. Eng. Res. Express 1(2), 025004 (2019). https://doi.org/10.1088/2631-8695/ab48a0
B.K. Singh, V. Bambole, V. Rastogi, P.C. Pandey, Multi-channel photonic bandgap engineering in hyperbolic graded index materials embedded one-dimensional photonic crystals. Opt. Laser Technol. 129, 106293 (2020). https://doi.org/10.1016/j.optlastec.2020.106293
D. Dash, J. Saini, Hyperbolic Graded Index Biophotonic Cholesterol Sensor with Improved Sensitivity. Prog Electromagnet Res M 116, 165–176 (2023). https://doi.org/10.2528/PIERM23032302
D. Dragoman, M. Dragoman, Advanced Optoelectronic devices (Springer, Berlin, 1999), p. 424
D.I. Khusyainov, A.V. Gorbatova, A.M. Buryakov, Terahertz generation from surface of the bulk and monolayer tungsten diselenide. Russian Technological Journal 8(6), 121–129 (2020). https://doi.org/10.32362/2500-316X-2020-8-6-121-129
P. Yeh, Optical wave in layered media (Wiley, New Jersey, 1988)
T. Touam, F. Yergeau, Analytical solution for a linearly graded-index-profile planar waveguide. Appl. Opt. 32, 309–312 (1993). https://doi.org/10.1364/AO.32.000309
S. Chatterjee, P.R. Chaudhuri, Some Unique Propagation Characteristics of Linearly Graded Multilayered Planar Optical Waveguides. Journal of Basic and Applied Physics 3(1), 1–9 (2014)
R.L. Lachance, P.-A. Belanger, Modes in divergent parabolic graded-index optical fibers. J. Lightwave Technol. 9(11), 1425–1430 (1991). https://doi.org/10.1109/50.97628
M. H. Weik Parabolic refractive-index profile. In: Computer Science and Communications Dictionary. (Springer, Boston, MA., 2000), https://doi.org/10.1007/1-4020-0613-6_13593
S.E. Savotchenko, Surface waves propagating along the interface between a parabolic graded-index medium and a self-focusing nonlinear medium: exact analytical solution. J. Opt. 24(10), 105501 (2022). https://doi.org/10.1088/2040-8986/ac8e80
S.-Y. Huang, S. Wang, Ray optics of a planar waveguide with an exponential index profile. J. Appl. Phys. 55(4), 647–651 (1984). https://doi.org/10.1063/1.333117
Article ADS MathSciNet Google Scholar
A.M. Shutyi, D.I. Sementsov, A.V. Kazakevich, D.G. Sannikov, Waveguide regimes of a graded-index planar waveguide with cladding. Tech. Phys. 44(11), 1329–1333 (1999). https://doi.org/10.1134/1.1259518
V. W. Biricik, Hyperbolic tangent graded-index antireflection coatings, Optical Society of America Annual Meeting, Technical Digest Series. (1991), ThMM52. https://doi.org/10.1364/OAM.1991.ThMM52.
M. Dalarsson, Y. Ivanenko, S. Nordebo, Wave propagation in waveguides with graded plasmonic obstacles. J. Opt. Soc. Am. B 38, 104–113 (2021). https://doi.org/10.1364/JOSAB.410092
B. Rana, B.B. Svendsen, M. Dalarsson, TE-Wave Propagation Over an Impedance-Matched RHM to LHM Transition in a Hollow Waveguide. Progress Electromagnet Res M 110, 1–10 (2022). https://doi.org/10.2528/PIERM22022505
K. Kim, Excitation of s-polarized surface electromagnetic waves in inhomogeneous dielectric media. Opt. Express 16(17), 13354–13363 (2008). https://doi.org/10.1364/OE.16.013354
Z. Cao, Y. Jiang, Q. Shen, X. Dou, Y. Chen, Exact analytical method for planar optical waveguides with arbitrary index profile. J. Opt. Soc. Am. A 16(9), 2209–2212 (1999). https://doi.org/10.1364/JOSAA.16.002209
Article ADS MathSciNet Google Scholar
N.A. Kudryashov, Optical solitons of mathematical model with arbitrary refractive index. Optik 224, 165391 (2020). https://doi.org/10.1016/j.ijleo.2020.165391
M. Bednarik, M. Cervenka, Electromagnetic waves in graded-index planar waveguides. J. Opt. Soc. Am. B 37, 3631–3643 (2020). https://doi.org/10.1364/JOSAB.408679
A.H. Arnous, A. Biswas, Y. Yıldırım, A. Asiri, Quiescent Optical Solitons for the Concatenation Model Having Nonlinear Chromatic Dispersion with Differential Group Delay. Contemp. Math. 4(4), 877–904 (2023). https://doi.org/10.37256/cm.4420233596
A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, A. Biswas, Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme. Ukrainian J. Phys. Opt. 23(4), 228–242 (2022). https://doi.org/10.3116/16091833/23/4/228/2022
A.A. Al Qarni, A.M. Bodaqah, A.S.H.F. Mohammed, A.A. Alshaery, H.O. Bakodah, A. Biswas, Dark and singular cubic-quartic optical solitons with Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme. Ukrainian J. Phys. Opt. 24(1), 46–61 (2023). https://doi.org/10.3116/16091833/24/1/46/2023
E.M. Zayed, K.A. Gepreel, M. El-Horbaty, A. Biswas, Y. Yıldırım, H. Triki, A. Asiri, Optical solitons for the dispersive concatenation model. Contemp. Math. 4(3), 592–611 (2023). https://doi.org/10.37256/cm.4320233321
A.H. Arnous, A. Biswas, Y. Yıldırım, L. Moraru, M. Aphane, S.P. Moshokoa, H.M. Alshehri, Quiescent optical solitons with Kudryashov’s generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution. Ukrainian J. Phys. Opt. 24(2), 105–113 (2023). https://doi.org/10.3116/16091833/24/2/105/2023
E.M.E. Zayed, M.E.M. Alngar, R.M.A. Shohib, A. Biswas, Y. Yıldırım, L. Moraru, P.L. Georgescu, C. Iticescu, A. Asiri, Highly dispersive solitons in optical couplers with metamaterials having Kerr law of nonlinear refractive index. Ukrainian J. Phys. Opt. 25(1), 01001–01019 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.01001
A. Adem, A. Biswas, Y. Yildirim, A. Jawad, A. Alshomrani, Implicit quiescent optical solitons for complex Ginzburg-Landau equation with generalized quadratic-cubic form of self-phase modulation and nonlinear chromatic dispersion by lie symmetry. Ukrainian Journal of Physical Optics. 25, 02036–02041 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02042
P. Albayrak, M. Ozisik, M. Bayram, A. Secer, S.E. Das, A. Biswas, Y. Yıldırım, M. Mirzazadeh, A. Asiri, Pure-cubic optical solitons and stability analysis with Kerr law nonlinearity. Contemp. Math. 4(3), 530–548 (2023). https://doi.org/10.37256/cm.4320233308
A.R. Adem, A. Biswas, Y. Yıldırım, A.J.M. Jawad, A.S. Alshomrani, Implicit quiescent optical solitons with generalized quadratic cubic form of self phase modulation and nonlinear chromatic dispersion by Lie symmetry. Ukrainian J. Phys. Opt. 25(2), 02016–02020 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02016
A. Elsherbeny, A.H. Arnous, A.J.M. Jawad, A. Biswas, Y. Yıldırım, L. Moraru, A. Alshomrani, Quescent optical solitons for the dispersive concatenation model with Kerr law nonlinearity having nonlinear chromatic dispersion. Ukrainian J. Phys. Opt. 25(1), 01054–01064 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.01054
A.R. Adem, A. Biswas, Y. Yıldırım, A.J.M. Jawad, A.S. Alshomrani, Implicit Quiescent Optical Solitons for Complex Ginzburg-Landau Equation with Generalized quadratic cubic Form of Self-Phase Modulation and Nonlinear Chromatic Dispersion by Lie Symmetry. Ukrainian J. Phys. Opt. 25(2), 02042–02047 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02043
O. González-Gaxiola, A. Biswas, Y. Yildirim, A.J. Mohamad Jawad, Optical Solitons for the Dispersive Concatenation Model by Laplace-Adomian Decomposition. Ukr. J. Phys. Opt. 25(1), 01094–01105 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.01094
E.M. Zayed, R. Shohib, M.E. Alngar, A. Biswas, Y. Yıldırım, A. Dakova, H.M. Alshehri, M.R. Belic, Optical solitons in the Sasa-Satsuma model with multiplicative noise via Itô calculus. Ukrainian J. Phys. Opt. 23(1), 9–14 (2022). https://doi.org/10.3116/16091833/23/1/9/2022
E.M. Zayed, M.E. Alngar, R. Shohib, A. Biswas, Y. Yıldırım, C.M.B. Dragomir, Highly dispersive gap solitons in optical fibers with dispersive reflectivity having parabolic-nonlocal nonlinearity. Ukrainian J. Phys. Opt. 25(1)
Comments (0)