M.Grätzel, Photoelectrochemical cells. Nature 414, 338 (2001
B. O’Regan, M. Grätzel, A low-cost, high-efciency solar cell based on dye-sensitized colloidal TiO2 flms. Nature. 353, 737 (1991)
M. Grätzel, Perspectives for dyesensitized nanocrystalline solar cells. Prog. Photovoltaics Res. Appl. 8, 171 (2000)
M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: a brief overview. Sol. Energy. 85, 1172 (2011)
S. D.Kuang, B. Ito, J.E. Klein, R. Moser, S. Humphry-Baker, M. Zakeeruddin, Gratzel, High molar extinction coefficient heteroleptic Ruthenium complexes for Thin Film Dye-Sensitized Solar cells. J. Am. Chem. Soc. 128, 4146 (2006)
M. Anand, S. Suresh, S. Anandan, G. Ahalya, S. Padmapriya, K. Rangesh, Photovoltaic performance of Gracilaria corticata seaweed extract as sensitizer in dye sensitized solar cell. J. Opt. 52(1), 128 (2023)
T. Minami, Present status of transparent conducting oxide thin-flm development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films. 516, 5822 (2008)
D. Guti´Errez-Tauste, I. Zumeta et al., E.Vigil, l. New Low-Temperature Preparation Method of the TiO2 Porous Photoelectrode for Dye-Sensitized Solar Cells Using UV Irradiation. Journal of Photochemistry and Photobiology A: Chemistry 175, 165 (2005)
S. Ito, T.N. Murakami, P. Comte et al., Fabrication of thin flm dye sensitized solar cells with solar to electric power conversion effciency over 10%. Thin Solid Films. 516, 4613 (2008)
Y. Zhang, B. Zhang, X. Peng, Liu et al., Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material. Nano Res. 8, 3830 (2015)
K. Fan, C. Gong, T. Peng, J. Chen, J. Xia et al., A novel preparation of small TiO2 nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature. Nanoscale. 3, 3900 (2011)
D. Arteaga, R. Cotta, A. Ortiz, B. Insuasty, N. Martin, Zn(II)-porphyrin dyes with several electron acceptor groups linked by vinyl-fluorene or vinylthiophene spacers for dye-sensitized solar cells. Dyes Pigm. 112, 127 (2015)
J. Cui, J. Lu, X. Xu, K. Cao, Z. Wang, G. Alemu et al., Organic sensitizers with pyridinering anchoring group for p-type dye-sensitized solar cells. J. Phys. Chem. C 118, 16433 (2014)
N. Manfredi, B. Cecconi, A. Abbotto, Multi-branched multi-anchoring metal-free dyes for dye-sensitized solar cells. Eur. J. Org. Chem. 2014, 7069 (2014)
D.K. Kumar, S.K. Swami, V. Dutta, B. Chen, N. Bennett, H.M. Upadhyaya, Scalable screen-printing manufacturing process for graphene oxide platinum free alternative counter electrodes in effcient dye sensitized solar cells. FlatChem. 15, 100105 (2019)
C.H. Chiang, C.G. Wu, High-effcient dye-sensitized solar cell based on highly conducting and thermally stable PEDOT:PSS/glass counter electrode. Org. Electron. 14, 1769 (2013)
S. Prasad, D. Devaraj, R. Boddula, S. Salla, M.S. AlSalhi, Fabrication, device performance, and MPPT for flexible dye-sensitized solar panel based on gelpolymer phthaloylchitosan based electrolyte and nanocluster CoS2 counter electrode. Mater. Sci. Energy Technol. 2, 319 (2019)
H. Wang, W. Wei, Y.H. Hu, NiO as an effcient counter electrode catalyst for dyesensitized solar cells. Top. Catal. 57, 607 (2014)
A. Roy, P.S. Devi, S. Karazhanov, D. Mamedov, T.K. Mallick, S. Sundaram, A review on applications of Cu2ZnSnS4 as alternative counter electrodes in dye-sensitized solar cells. AIP Adv. 8, 070701 (2018)
A. Kay, M. Gr¨atzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97, 6272 (1993)
A. Moranderia, I. Lopez-Duarte, B. O’Regan et al., Ru(II)-phthalocyanine sensitized solar cells: the influence of coadsorbents upon interfacial electron transfer kinetics. J. Mater. Chem. 19, 5016 (2009)
J. Lim, Y.S. Kwon, T. Park, Effect of coadsorbent properties on the photovoltaic performance of dye-sensitized solar cells. Chem. Commun. 47, 4147 (2011)
Z. Zhang, N. Evans, S.M. Zakeeruddin, R. Humphry-Baker, M. Gr¨atzel, Effects of 휔-guanidinoalkyl acids as coadsorbents in dye-sensitized solar cells. J. Phys. Chem. C 111, 398 (2007)
H. Matsuyoshi, H. Tomita, H. Nishino, H. Sakamoto, K. Manabe, The Effects of Malonic Acid Derivatives and Acetic Acid Derivatives as Coadsorbents on the Photovoltaic Performance of Dye-Sensitized Solar Cells. International Journal of Photoenergy 2013, 1 (2013)
W. Huang, W. Qu, D. Zhu, Electrochemistry and determination of 1-Naphthylacetic acid using an Acetylene Black Film Modified Electrode. Bull. Korean Chem. Soc. 29, 1323 (2008)
L.W. Xue, C. Chen, G.Q. Zhao, Y.W. Chun, Syntheses, Crystal Structures, Antimicrobial Activity and Termal Behavior of copper(II) complexes derived from 1- naphthylacetic acid and Diamines. Acta Chim. Slov. 67, 189 (2020)
Y. Sun, A.C. Onicha, M. Myahkostupov, F.N. Castellano, Viable alternative to N719 for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 2(7), 2039 (2010)
S.K. Sharma, H. Im, D.Y. Kim, R.M. Mehra, Review on Se-and S-doped hydrogen a tedamorphous silicon films. Indian J. PureAppl Phys. 52, 293 (2014)
X. Zhao, P. Yang, X. Lai, H.Lin, J.Li, The effects of the solvent ratio on the electron transport for non-sintering flexible TiO2 photoanodes. Electrochim. Acta. 146, 164 (2014)
A. Ghassemi, M. Ghassemi, A. Cota, Energy and the Environment: Solar Energy (Taylor & Francis Group, London, 2010), pp. 45–56
P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Graltzel, Enhance the performance of Dye-Sensitized Solar cells by co-grafting amphiphilic sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals. J. Phys. Chem. B 107, 14336 (2003)
R.A. Toor, M.H. Sayyad, N. Nasr, S. Sajjad, S.A.A. Shah, T. Manzoor, Efficiency enhancement of dye sensitized solar cells with a low cost co-adsorbant in N719 dye. Int. J. Sustain. Energy Environ. Res. 5, 46 (2016)
H. Shen, H. Lin, Y. Liu, X. Li, J. Zhang, N. Wang, J. Li, A novel diphenylphosphinic acid coadsorbent for dye-sensitized solar cel. Electrochim. Acta. 56, 2092 (2011)
M.M. Ardakani, R. Arazi, Improving the effective photovoltaic performance in dye- sensitized solar cells using an azobenzenecarboxylic acid-based system. Heliyon. 5, 1 (2019)
Comments (0)