Development of an Interpretable Deep Learning Model for Pathological Tumor Response Assessment After Neoadjuvant Therapy

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424 2.1. Chen M., Li X., Chen Y., et al. Proposed revision of the 8th edition AJCC clinical staging system for esophageal squamous cell cancer treated with definitive chemo-IMRT based on CT imaging. Radiation Oncology. 2019;14(1):p. 54.

Article  PubMed  Google Scholar 

van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84.

Article  PubMed  Google Scholar 

Tepper J, Krasna MJ, Niedzwiecki D, et al. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol. 2008;26(7):1086–92 3.1. Yang H, Liu H, Chen Y, Zhu C, Fang W, Yu Z, et al. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the esophagus (NEOCRTEC5010): A phase III multicenter, randomized, open-label clinical trial. J Clin Oncol 2018; 36:2796–803.

Article  CAS  PubMed  Google Scholar 

Ajani JA, D’Amico TA, Bentrem DJ, et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17(7):855–83.

Article  CAS  PubMed  Google Scholar 

Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science. 2020;367(6477):eaax0182.

Yang G, Su X, Yang H, et al. Neoadjuvant programmed death-1 blockade plus chemotherapy in locally advanced esophageal squamous cell carcinoma. Ann Transl Med. 2021;9(15):1254.

Article  PubMed  PubMed Central  Google Scholar 

Wu Z, Zheng Q, Chen H, et al. Efficacy and safety of neoadjuvant chemotherapy and immunotherapy in locally resectable advanced esophageal squamous cell carcinoma. J Thorac Dis. 2021;13(6):3518–28.

Article  PubMed  PubMed Central  Google Scholar 

Muro K, Kojima T, Moriwaki T, et al. Second-line pembrolizumab versus chemotherapy in Japanese patients with advanced esophageal cancer: subgroup analysis from KEYNOTE-181. Esophagus. 2022;19(1):137–45.

Article  PubMed  Google Scholar 

Berger AC, Farma J, Scott WJ, et al. Complete response to neoadjuvant chemoradiotherapy in esophageal carcinoma is associated with significantly improved survival. J Clin Oncol. 2005;23(19):4330–7.

Article  PubMed  Google Scholar 

Langer R, Ott K, Feith M, Lordick F, Siewert JR, Becker K. Prognostic significance of histopathological tumor regression after neoadjuvant chemotherapy in esophageal adenocarcinomas. Mod Pathol. 2009;22(12):1555–63.

Article  CAS  PubMed  Google Scholar 

Lerttanatum N, Tharavej C, Chongpison Y, Sanpavat A. Comparison of tumor regression grading system in locally advanced esophageal squamous cell carcinoma after preoperative radio-chemotherapy to determine the most accurate system predicting prognosis. J Gastrointest Oncol. 2019;10(2):276–82.

Article  PubMed  PubMed Central  Google Scholar 

Karamitopoulou E, Thies S, Zlobec I, et al. Assessment of tumor regression of esophageal adenocarcinomas after neoadjuvant chemotherapy: comparison of 2 commonly used scoring approaches. Am J Surg Pathol. 2014;38(11):1551–6.

Article  PubMed  Google Scholar 

Chirieac LR, Swisher SG, Ajani JA, et al. Posttherapy pathologic stage predicts survival in patients with esophageal carcinoma receiving preoperative chemoradiation. Cancer. 2005;103(7):1347–55.

Article  PubMed  Google Scholar 

Chang F, Deere H, Mahadeva U, George S. Histopathologic examination and reporting of esophageal carcinomas following preoperative neoadjuvant therapy: practical guidelines and current issues. Am J Clin Pathol. 2008;129(2):252–62.

Article  PubMed  Google Scholar 

Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer research, diagnosis and therapy. Nat Rev Cancer. 2021;21(12):747–52.

Article  CAS  PubMed  Google Scholar 

Kleppe A, Skrede OJ, De Raedt S, Liestol K, Kerr DJ, Danielsen HE. Designing deep learning studies in cancer diagnostics. Nat Rev Cancer. 2021;21(3):199–211.

Article  CAS  PubMed  Google Scholar 

Chen CL, Chen CC, Yu WH, Chen SH, Chang YC, Hsu TI, Hsiao M, Yeh CY, Chen CY. An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning. Nat Commun. 2021;12(1):1193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N, Tsirigos A. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diao S, Luo W, Hou J, Lambo R, Al-Kuhali HA, Zhao H, Tian Y, Xie Y, Zaki N, Qin W. Deep Multi-Magnification Similarity Learning for Histopathological Image Classification. IEEE J Biomed Health Inform. 2023;27(3):1535–45.

Article  Google Scholar 

Van Rijthoven M, Balkenhol M, Siliņa K, Van Der Laak J, Ciompi F. HookNet: Multi-resolution convolutional neural networks for semantic segmentation in histopathology whole-slide images. Med Image Anal. 2021;1(68):101890.

Article  Google Scholar 

Wang L, Pan L, Wang H, Liu M, Feng Z, Rong P, Chen Z, Peng S. DHUnet: Dual-branch hierarchical global–local fusion network for whole slide image segmentation. Biomed Signal Proc Control. 2023;1(85):104976.

Article  Google Scholar 

Kleczek P, Jaworek-Korjakowska J, Gorgon M. A novel method for tissue segmentation in high-resolution H&E-stained histopathological whole-slide images. Comput Med Imaging Graph. 2020;1(79):101686.

Article  Google Scholar 

Lu MY, Williamson DF, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng. 2021;5(6):555–70.

Article  PubMed  PubMed Central  Google Scholar 

Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, Brogi E, Reuter VE, Klimstra DS, Fuchs TJ. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25(8):1301–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH. Patch-based convolutional neural network for whole slide tissue image classification. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 2424–2433).

Wang X, Chen H, Gan C, Lin H, Dou Q, Tsougenis E, Huang Q, Cai M, Heng PA. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE transactions on cybernetics. 2019;50(9):3950–62.

Article  PubMed  Google Scholar 

Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Huang, J., ... & Han, X. (2021). Transpath: Transformer-based self-supervised learning for histopathological image classification. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24 (pp. 186–195). Springer International Publishing.

Comments (0)

No login
gif