TFCP2L1, a potential differentiation regulator, predicts favorable prognosis and dampens thyroid cancer progression

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

Article  PubMed  Google Scholar 

Yan T, Qiu W, Song J, Fan Y, Yang Z (2021) ARHGAP36 regulates proliferation and migration in papillary thyroid carcinoma cells. J Mol Endocrinol 66(1):1–10

Article  CAS  PubMed  Google Scholar 

Liu HQ, Chen Q, Liu BH, Wang JX, Chen C, Sun SR (2023) Blood profiles in the prediction of radioiodine refractory papillary thyroid cancer: a case- control study. J Multidiscip Healthc 16:535–546

Article  PubMed  PubMed Central  Google Scholar 

Zheng L M, Li L, He QQ, Wang M, Ma Y H, Zhu J et al (2021) Response to immunotherapy in a patient with anaplastic thyroid cancer A case report. Medicine 100(32).

Jana T, Brodsky S, Barkai N (2021) Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet 37(5):421–432

Article  CAS  PubMed  Google Scholar 

Bushweller JH (2019) Targeting transcription factors in cancer-from undruggable to reality. Nat Rev Cancer 19(11):611–624

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhagwat AS, Vakoc CR (2015) Targeting transcription factors in cancer. Trends Cancer 1(1):53–65

Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F et al (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ 29(11):2190–2202

Article  PubMed  PubMed Central  Google Scholar 

Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T (2018) TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 420:72–79

Article  CAS  PubMed  Google Scholar 

Qiu DB, Ye SD, Ruiz B, Zhou XL, Liu DH, Zhang Q et al (2015) Klf2 and Tfcp2l1, Two Wnt/beta-catenin targets, Act synergistically to induce and maintain naive pluripotency. Stem Cell Rep 5(3):314–322

Article  CAS  Google Scholar 

Sun HW, You Y, Guo MM, Wang XH, Zhang Y, Ye S (2018) Tfcp2l1 safeguards the maintenance of human embryonic stem cell self-renewal. J Cell Physiol 233(9):6944–6951

Article  CAS  PubMed  Google Scholar 

Zhang M, Ji JX, Wang XX, Zhang XB, Zhang Y, Li YT et al (2021) The transcription factor Tfcp2l1 promotes primordial germ cell-like cell specification of pluripotent stem cells. J Biol Chem 297(4).

Heo J, Noh BJ, Lee S, Lee HY, Kim Y, Lim J et al (2020) Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. Embo Mol Med 12(1)

Heo J, Lee J, Nam YJ, Kim Y, Yun H, Lee S et al (2022) The CDK1/TFCP2L1/ID2 cascade offers a novel combination therapy strategy in a preclinical model of bladder cancer. Exp Mol Med 54(6):801–811

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tun H W, Marlow L A, von Roemeling C A, Cooper S J, Kreinest P, Wu K et al (2010) Pathway signature and cellular differentiation in clear cell renal cell carcinoma. Plos One 5(5).

Vokshi B H, Davidson G, Sedehi N T P, Helleux A, Rippinger M, Haller A R et al (2023) SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance. Nat Commun 14(1).

Otto B, Streichert T, Wegwitz F, Gevensleben H, Klatschke K, Wagener C et al (2013) Transcription factors link mouse WAP-T mammary tumors with human breast cancer. Int J Cancer 132(6):1311–1322

Article  CAS  PubMed  Google Scholar 

Yang J, Bergdorf K, Yan C, Luo W, Chen S C, Ayers G D et al (2023) CXCR2 expression during melanoma tumorigenesis controls transcriptional programs that facilitate tumor growth. Mol Cancer 22(1).

Li XY, Yang S, Zhao CY, Yang J, Li C, Shen WH et al (2021) CircHACE1 functions as a competitive endogenous RNA to curb differentiated thyroid cancer progression by upregulating Tfcp2L1 through adsorbing miR-346. Endocr J 68(8):1011–1025

Article  CAS  PubMed  Google Scholar 

Guan H, Guo Y, Liu L, Ye R, Liang W, Li H et al (2018) INAVA promotes aggressiveness of papillary thyroid cancer by upregulating MMP9 expression. Cell Biosci 8:26

Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Li H, Liang W, Guo Y, Peng M, Ke W et al (2021) SLC6A15 acts as a tumor suppressor to inhibit migration and invasion in human papillary thyroid cancer. J Cell Biochem 122(8):814–826

Article  CAS  PubMed  Google Scholar 

Li H, Guan H Y, Guo Y, Liang W W, Liu L H, He X Y et al (2018) CITED1 promotes proliferation of papillary thyroid cancer cells via the regulation of p21 and p27. Cell Biosci 8.

Zeng C M, Li H, Liang W W, Chen J X, Zhang Y L, Zhang H R et al (2023) Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine.

Cancer Genome Atlas Research N (2014) Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3):676–690

Article  Google Scholar 

Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173(2):338-354.e15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH et al (2016) Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest 126(3):1052–1066

Article  PubMed  PubMed Central  Google Scholar 

Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q et al (2020) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514.

Zhou J, Xu M, Tan J, Zhou L, Dong F, Huang T (2022) MMP1 acts as a potential regulator of tumor progression and dedifferentiation in papillary thyroid cancer. Front Oncol 12:1030590

Article  CAS  PubMed  PubMed Central  Google Scholar 

He W, Sun Y, Ge J, Wang X, Lin B, Yu S et al (2023) STRA6 regulates tumor immune microenvironment and is a prognostic marker in BRAF-mutant papillary thyroid carcinoma. Front Endocrinol (Lausanne) 14:1076640

Article  PubMed  Google Scholar 

Yu P, Qu N, Zhu R, Hu J, Han P, Wu J et al (2023) TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis. Sci Adv 9(35):eadg7125

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jendrzejewski J, Thomas A, Liyanarachchi S, Eiterman A, Tomsic J, He H et al (2015) PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab 100(10):E1370–E1377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng QS, Huang T, Li LF, Shen ZB, Xue WH, Zhao J (2021) Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Front Med (Lausanne) 8:812278

Article  PubMed  Google Scholar 

Li Y, He J, Wang F, Wang X, Yang F, Zhao C et al (2020) Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol 18(1):181

Article  PubMed  PubMed Central  Google Scholar 

Rotondi M, Coperchini F, Latrofa F, Chiovato L (2018) Role of chemokines in thyroid cancer microenvironment: is CXCL8 the main player? Front Endocrinol (Lausanne) 9:314

Article  PubMed  Google Scholar 

Lumachi F, Basso SM, Orlando R (2010) Cytokines, thyroid diseases and thyroid cancer. Cytokine 50(3):229–233

Article  CAS  PubMed  Google Scholar 

Zeng W, Chang H, Ma M, Li Y (2014) CCL20/CCR6 promotes the invasion and migration of thyroid cancer cells via NF-kappa B signaling-induced MMP-3 production. Exp Mol Pathol 97(1):184–190

Article  CAS  PubMed  Google Scholar 

Zhang G Q, Xi C, Shen C T, Song H J, Luo Q Y, and Qiu Z L (2023) Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells. Endocr Relat Cancer 30(9).

Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436

Article  CAS  PubMed  Google Scholar 

Taniguchi K, Karin M (2018) NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18(5):309–324

Article  CAS  PubMed  Google Scholar 

Garg B, Giri B, Modi S, Sethi V, Castro I, Umland O et al (2018) NFkappaB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via up-regulation of CXCL12. Gastroenterology 155(3):880-891.e8

Article  CAS  PubMed  Google Scholar 

Jiang SH, Zhu LL, Zhang M, Li RK, Yang Q, Yan JY et al (2019) GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in pancreatic cancer through tuning KCNN4-mediated Ca(2+) signalling in a GABA-independent manner. Gut 68(11):1994–2006

Article  CAS  PubMed  Google Scholar 

Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115

Article  CAS  PubMed  Google Scholar 

Ma B, Xu W, Wei W, Wen D, Lu Z, Yang S et al (2018) Clinicopathological and survival outcomes of well-differentiated thyroid carcinoma undergoing dedifferentiation: a retrospective study from FUSCC. Int J Endocrinol 2018:2383715

Article  PubMed  PubMed Central  Google Scholar 

Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K et al (2019) 2019 European Thyroid Association Guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J 8(5):227–245

Article  PubMed  PubMed Central  Google Scholar 

Hou XK, Tian MR, Ning JY, Wang ZY,

Comments (0)

No login
gif