Acellular spinal cord scaffold containing quercetin-encapsulated nanoparticles plays an anti-inflammatory role in functional recovery from spinal cord injury in rats

Abbaszadeh F, Jorjani M, Joghataei MT, Raminfard S, Mehrabi S (2023) Astaxanthin ameliorates spinal cord edema and astrocyte activation via suppression of HMGB1/TLR4/NF-κB signaling pathway in a rat model of spinal cord injury. Naunyn Schmiedebergs Arch Pharmacol 396(11):3075–3086. https://doi.org/10.1007/s00210-023-02512-7

Article  CAS  PubMed  Google Scholar 

Agyapong O, Asiedu SO, Kwofie SK, Miller WA, Parry CS, Sowah RA et al (2021) Molecular modelling and de novo fragment-based design of potential inhibitors of beta-tubulin gene of Necator americanus from natural products. Inform Med Unlocked 26:100734. https://doi.org/10.1016/j.imu.2021.100734

Article  PubMed  PubMed Central  Google Scholar 

Antçnio E, Khalil NM, Mainardes RM (2016) Bovine serum albumin nanoparticles containing quercetin: characterization and antioxidant activity. J Nanosci Nanotechnol 16(2):1346–1353

Article  Google Scholar 

Arslan YE, Efe B, Sezgin Arslan T (2019) A novel method for constructing an acellular 3D biomatrix from bovine spinal cord for neural tissue engineering applications. Biotechnol Prog 35(4):e2814

Article  PubMed  Google Scholar 

Babapour M, Mohammadi H, Kazemi M, Hadi A, Rezazadegan M, Askari G (2021) Associations between serum magnesium concentrations and polycystic ovary syndrome status: a systematic review and meta-analysis. Biol Trace Elem Res 199(4):1297–1305. https://doi.org/10.1007/s12011-020-02275-9

Article  CAS  PubMed  Google Scholar 

Cai M, Chen L, Wang T, Liang Y, Zhao J, Zhang X et al (2023) Hydrogel scaffolds in the treatment of spinal cord injury: a review. Front Neurosci 17:1211066. https://doi.org/10.3389/fnins.2023.1211066

Article  PubMed  PubMed Central  Google Scholar 

Cawsey T, Duflou J, Weickert CS, Gorrie CA (2015) Nestin-positive ependymal cells are increased in the human spinal cord after traumatic central nervous system injury. J Neurotrauma 32(18):1393–1402. https://doi.org/10.1089/neu.2014.3575

Article  PubMed  PubMed Central  Google Scholar 

Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR et al (2010) Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J 1(1):164–209. https://doi.org/10.1007/s13167-010-0001-x

Article  PubMed  PubMed Central  Google Scholar 

Ding Y, Ding X, Zhang H, Li S, Yang P, Tan Q (2022) Relevance of NLRP3 inflammasome-related pathways in the pathology of diabetic wound healing and possible therapeutic targets. Oxid Med Cell Longev 2022:9687925. https://doi.org/10.1155/2022/9687925

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebrahimi B, Vafaei S, Rastegar-Moghaddam SHR, Hosseini M, Tajik Yabr F, Mohammadipour A (2021) Crocin administration from childhood to adulthood increases hippocampal neurogenesis and synaptogenesis in male mice. J Kerman Univ Med Sci 28(3):243–251

Google Scholar 

Faccendini A, Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM et al (2017) Nanofiber scaffolds as drug delivery systems to bridge spinal cord injury. Pharmaceuticals (basel) 10(3):63. https://doi.org/10.3390/ph10030063

Article  CAS  PubMed  Google Scholar 

Fakhri S, Gravandi MM, Abdian S, Moradi SZ, Echeverría J (2022) Quercetin derivatives in combating spinal cord injury: a mechanistic and systematic review. Life 12(12):1960

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X et al (2018) Microenvironment imbalance of spinal cord injury. Cell Transplant 27(6):853–866

Article  PubMed  PubMed Central  Google Scholar 

Fan H, Tang H-B, Shan L-Q, Liu S-C, Huang D-G, Chen X et al (2019) Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats. J Neuroinflammation 16(1):206. https://doi.org/10.1186/s12974-019-1613-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu J-J, Sun C, Tan Z-F, Zhang G-Y, Chen G-B, Song L (2022) Nanocomplexes of curcumin and glycated bovine serum albumin: the formation mechanism and effect of glycation on their physicochemical properties. Food Chem 368:130651

Article  CAS  PubMed  Google Scholar 

Guo S, Ren X, Wu B, Jiang T (2010) Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility. Spinal Cord 48(7):576–581

Article  PubMed  Google Scholar 

Han X, Xu T, Fang Q, Zhang H, Yue L, Hu G et al (2021) Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 44:102010. https://doi.org/10.1016/j.redox.2021.102010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang W, Huang Y, Han N, He F, Li M, Bian Z et al (2016) Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord 54(8):592–596

Article  CAS  PubMed  Google Scholar 

Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M et al (2016) Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 13(11):1609–1623. https://doi.org/10.1080/17425247.2016.1193149

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim D, Maharjan P, Jin M, Park T, Maharjan A, Amatya R et al (2019) Potential albumin-based antioxidant nanoformulations for ocular protection against oxidative stress. Pharmaceutics 11(7):297

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Chen J, Liu B, Yang C, Xie D, Zheng X et al (2013) Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci 325(1–2):127–136

Article  PubMed  Google Scholar 

Liu J, Li K, Huang K, Yang C, Huang Z, Zhao X et al (2020) Acellularized spinal cord scaffolds incorporating bpV (pic)/PLGA microspheres promote axonal regeneration and functional recovery after spinal cord injury. RSC Adv 10(32):18677–18686

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Yang X, Gan J, Chen S, Xiao Z-X, Cao Y (2022) CB-Dock 2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res 50(W1):W159–W164

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manca ML, Lai F, Pireddu R, Valenti D, Schlich M, Pini E et al (2020) Impact of nanosizing on dermal delivery and antioxidant activity of quercetin nanocrystals. J Drug Deliv Sci Technol 55:101482

Article  CAS  Google Scholar 

Mandwie M, Piper JA, Gorrie CA, Keay KA, Musumeci G, Al-Badri G et al (2022) Rapid GFAP and Iba1 expression changes in the female rat brain following spinal cord injury. Neural Regen Res 17(2):378

Article  CAS  PubMed  Google Scholar 

Mao Y, Mathews K, Gorrie CA (2016) Temporal response of endogenous neural progenitor cells following injury to the adult rat spinal cord. Front Cell Neurosci 10:58

Article  PubMed  PubMed Central  Google Scholar 

Mohammed I, Ijaz S, Mokhtari T, Gholaminejhad M, Mahdavipour M, Jameie B et al (2020) Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis 35(5):809–818. https://doi.org/10.1007/s11011-020-00563-w

Article  CAS  PubMed  Google Scholar 

Mokhtari T, Uludag K (2024) Role of NLRP3 inflammasome in post-spinal-cord-injury anxiety and depression: molecular mechanisms and therapeutic implications. ACS Chem Neurosci 15(1):56–70. https://doi.org/10.1021/acschemneuro.3c00596

Article  CAS  PubMed  Google Scholar 

Mokhtari T, Yue L-P, Hu L (2023) Exogenous melatonin alleviates neuropathic pain-induced affective disorders by suppressing NF-κB/NLRP3 pathway and apoptosis. Sci Rep 13(1):2111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Müller N, Scheld M, Voelz C, Gasterich N, Zhao W, Behrens V et al (2023) Lipocalin-2 deficiency diminishes canonical NLRP3 inflammasome formation and IL-1β production in the subacute phase of spinal cord injury. Int J Mol Sci 24(10):8689. https://doi.org/10.3390/ijms24108689

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M (2022) Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front Bioeng Biotechnol 10:805299. https://doi.org/10.3389/fbioe.2022.805299

Article  PubMed  PubMed Central  Google Scholar 

Pinheiro RGR, Pinheiro M, Neves AR (2021) Nanotechnology innovations to enhance the therapeutic efficacy of quercetin. Nanomaterials (basel) 11(10):2658. https://doi.org/10.3390/nano11102658

Article  CAS  PubMed  Google Scholar 

Precupas A, Sandu R, Popa VT (2016) Quercetin influence on thermal denaturation of bovine serum albumin. J Phys Chem B 120(35):9362–9375

Article  CAS  PubMed  Google Scholar 

Raissi H, Nadim ES, Yoosefian M, Farzad F, Ghiamati E, Nowroozi AR et al (2010) The effects of substitutions on structure, electron density, resonance and intramolecular hydrogen bonding strength in 3-mercapto-propenethial. J Mol Struct (THOECHEM) 960(1):1–9

Article 

Comments (0)

No login
gif