Abbaszadeh F, Jorjani M, Joghataei MT, Raminfard S, Mehrabi S (2023) Astaxanthin ameliorates spinal cord edema and astrocyte activation via suppression of HMGB1/TLR4/NF-κB signaling pathway in a rat model of spinal cord injury. Naunyn Schmiedebergs Arch Pharmacol 396(11):3075–3086. https://doi.org/10.1007/s00210-023-02512-7
Article CAS PubMed Google Scholar
Agyapong O, Asiedu SO, Kwofie SK, Miller WA, Parry CS, Sowah RA et al (2021) Molecular modelling and de novo fragment-based design of potential inhibitors of beta-tubulin gene of Necator americanus from natural products. Inform Med Unlocked 26:100734. https://doi.org/10.1016/j.imu.2021.100734
Article PubMed PubMed Central Google Scholar
Antçnio E, Khalil NM, Mainardes RM (2016) Bovine serum albumin nanoparticles containing quercetin: characterization and antioxidant activity. J Nanosci Nanotechnol 16(2):1346–1353
Arslan YE, Efe B, Sezgin Arslan T (2019) A novel method for constructing an acellular 3D biomatrix from bovine spinal cord for neural tissue engineering applications. Biotechnol Prog 35(4):e2814
Babapour M, Mohammadi H, Kazemi M, Hadi A, Rezazadegan M, Askari G (2021) Associations between serum magnesium concentrations and polycystic ovary syndrome status: a systematic review and meta-analysis. Biol Trace Elem Res 199(4):1297–1305. https://doi.org/10.1007/s12011-020-02275-9
Article CAS PubMed Google Scholar
Cai M, Chen L, Wang T, Liang Y, Zhao J, Zhang X et al (2023) Hydrogel scaffolds in the treatment of spinal cord injury: a review. Front Neurosci 17:1211066. https://doi.org/10.3389/fnins.2023.1211066
Article PubMed PubMed Central Google Scholar
Cawsey T, Duflou J, Weickert CS, Gorrie CA (2015) Nestin-positive ependymal cells are increased in the human spinal cord after traumatic central nervous system injury. J Neurotrauma 32(18):1393–1402. https://doi.org/10.1089/neu.2014.3575
Article PubMed PubMed Central Google Scholar
Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR et al (2010) Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J 1(1):164–209. https://doi.org/10.1007/s13167-010-0001-x
Article PubMed PubMed Central Google Scholar
Ding Y, Ding X, Zhang H, Li S, Yang P, Tan Q (2022) Relevance of NLRP3 inflammasome-related pathways in the pathology of diabetic wound healing and possible therapeutic targets. Oxid Med Cell Longev 2022:9687925. https://doi.org/10.1155/2022/9687925
Article CAS PubMed PubMed Central Google Scholar
Ebrahimi B, Vafaei S, Rastegar-Moghaddam SHR, Hosseini M, Tajik Yabr F, Mohammadipour A (2021) Crocin administration from childhood to adulthood increases hippocampal neurogenesis and synaptogenesis in male mice. J Kerman Univ Med Sci 28(3):243–251
Faccendini A, Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM et al (2017) Nanofiber scaffolds as drug delivery systems to bridge spinal cord injury. Pharmaceuticals (basel) 10(3):63. https://doi.org/10.3390/ph10030063
Article CAS PubMed Google Scholar
Fakhri S, Gravandi MM, Abdian S, Moradi SZ, Echeverría J (2022) Quercetin derivatives in combating spinal cord injury: a mechanistic and systematic review. Life 12(12):1960
Article CAS PubMed PubMed Central Google Scholar
Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X et al (2018) Microenvironment imbalance of spinal cord injury. Cell Transplant 27(6):853–866
Article PubMed PubMed Central Google Scholar
Fan H, Tang H-B, Shan L-Q, Liu S-C, Huang D-G, Chen X et al (2019) Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats. J Neuroinflammation 16(1):206. https://doi.org/10.1186/s12974-019-1613-2
Article CAS PubMed PubMed Central Google Scholar
Fu J-J, Sun C, Tan Z-F, Zhang G-Y, Chen G-B, Song L (2022) Nanocomplexes of curcumin and glycated bovine serum albumin: the formation mechanism and effect of glycation on their physicochemical properties. Food Chem 368:130651
Article CAS PubMed Google Scholar
Guo S, Ren X, Wu B, Jiang T (2010) Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility. Spinal Cord 48(7):576–581
Han X, Xu T, Fang Q, Zhang H, Yue L, Hu G et al (2021) Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 44:102010. https://doi.org/10.1016/j.redox.2021.102010
Article CAS PubMed PubMed Central Google Scholar
Jiang W, Huang Y, Han N, He F, Li M, Bian Z et al (2016) Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord 54(8):592–596
Article CAS PubMed Google Scholar
Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M et al (2016) Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 13(11):1609–1623. https://doi.org/10.1080/17425247.2016.1193149
Article CAS PubMed PubMed Central Google Scholar
Kim D, Maharjan P, Jin M, Park T, Maharjan A, Amatya R et al (2019) Potential albumin-based antioxidant nanoformulations for ocular protection against oxidative stress. Pharmaceutics 11(7):297
Article CAS PubMed PubMed Central Google Scholar
Liu J, Chen J, Liu B, Yang C, Xie D, Zheng X et al (2013) Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. J Neurol Sci 325(1–2):127–136
Liu J, Li K, Huang K, Yang C, Huang Z, Zhao X et al (2020) Acellularized spinal cord scaffolds incorporating bpV (pic)/PLGA microspheres promote axonal regeneration and functional recovery after spinal cord injury. RSC Adv 10(32):18677–18686
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Yang X, Gan J, Chen S, Xiao Z-X, Cao Y (2022) CB-Dock 2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res 50(W1):W159–W164
Article CAS PubMed PubMed Central Google Scholar
Manca ML, Lai F, Pireddu R, Valenti D, Schlich M, Pini E et al (2020) Impact of nanosizing on dermal delivery and antioxidant activity of quercetin nanocrystals. J Drug Deliv Sci Technol 55:101482
Mandwie M, Piper JA, Gorrie CA, Keay KA, Musumeci G, Al-Badri G et al (2022) Rapid GFAP and Iba1 expression changes in the female rat brain following spinal cord injury. Neural Regen Res 17(2):378
Article CAS PubMed Google Scholar
Mao Y, Mathews K, Gorrie CA (2016) Temporal response of endogenous neural progenitor cells following injury to the adult rat spinal cord. Front Cell Neurosci 10:58
Article PubMed PubMed Central Google Scholar
Mohammed I, Ijaz S, Mokhtari T, Gholaminejhad M, Mahdavipour M, Jameie B et al (2020) Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis 35(5):809–818. https://doi.org/10.1007/s11011-020-00563-w
Article CAS PubMed Google Scholar
Mokhtari T, Uludag K (2024) Role of NLRP3 inflammasome in post-spinal-cord-injury anxiety and depression: molecular mechanisms and therapeutic implications. ACS Chem Neurosci 15(1):56–70. https://doi.org/10.1021/acschemneuro.3c00596
Article CAS PubMed Google Scholar
Mokhtari T, Yue L-P, Hu L (2023) Exogenous melatonin alleviates neuropathic pain-induced affective disorders by suppressing NF-κB/NLRP3 pathway and apoptosis. Sci Rep 13(1):2111
Article CAS PubMed PubMed Central Google Scholar
Müller N, Scheld M, Voelz C, Gasterich N, Zhao W, Behrens V et al (2023) Lipocalin-2 deficiency diminishes canonical NLRP3 inflammasome formation and IL-1β production in the subacute phase of spinal cord injury. Int J Mol Sci 24(10):8689. https://doi.org/10.3390/ijms24108689
Article CAS PubMed PubMed Central Google Scholar
Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M (2022) Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front Bioeng Biotechnol 10:805299. https://doi.org/10.3389/fbioe.2022.805299
Article PubMed PubMed Central Google Scholar
Pinheiro RGR, Pinheiro M, Neves AR (2021) Nanotechnology innovations to enhance the therapeutic efficacy of quercetin. Nanomaterials (basel) 11(10):2658. https://doi.org/10.3390/nano11102658
Article CAS PubMed Google Scholar
Precupas A, Sandu R, Popa VT (2016) Quercetin influence on thermal denaturation of bovine serum albumin. J Phys Chem B 120(35):9362–9375
Article CAS PubMed Google Scholar
Raissi H, Nadim ES, Yoosefian M, Farzad F, Ghiamati E, Nowroozi AR et al (2010) The effects of substitutions on structure, electron density, resonance and intramolecular hydrogen bonding strength in 3-mercapto-propenethial. J Mol Struct (THOECHEM) 960(1):1–9
Comments (0)