Inhibition of cIAP1/2 reduces RIPK1 phosphorylation in pulmonary endothelial cells and alleviate sepsis-induced lung injury and inflammatory response

Dushianthan A, Grocott MPW, Postle AD, Cusack R. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J. 2011;87:612–22.

Article  CAS  PubMed  Google Scholar 

Botros L, Pronk MCA, Juschten J, Liddle J, Morsing SKH, van Buul JD, et al. Bosutinib prevents vascular leakage by reducing focal adhesion turnover and reinforcing junctional integrity. J Cell Sci. 2020;133:jcs240077.

Article  CAS  PubMed  Google Scholar 

Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science [Internet]. 1998 ;281:1305–8. https://www.science.org/doi/https://doi.org/10.1126/science.281.5381.1305. [cited 2023 Jun 9].

Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP, Tumor necrosis factor, receptor and Fas signaling mechanismS. Annual Review of Immunology [Internet]. 1999;17:331–67. https://doi.org/10.1146/annurev.immunol.17.1.331. [cited 2023 Jun 9].

Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A. 2008;105:11778–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong WW-L, Vince JE, Lalaoui N, Lawlor KE, Chau D, Bankovacki A et al. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood [Internet]. 2014;123:2562–72. https://www.sciencedirect.com/science/article/pii/S0006497120357529. [cited 2022 Sep 29].

Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10:561–74.

Article  CAS  PubMed  Google Scholar 

Coskun M, Olsen J, Seidelin JB, Nielsen OH. MAP kinases in inflammatory bowel disease. Clin Chim Acta. 2011;412:513–20.

Article  CAS  PubMed  Google Scholar 

Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic potential of targeting the Th17/Treg Axis in Autoimmune disorders. Molecules. 2017;22:134.

Article  PubMed  PubMed Central  Google Scholar 

Kawalkowska JZ, Ogbechi J, Venables PJ, Williams RO. cIAP1/2 inhibition synergizes with TNF inhibition in autoimmunity by down-regulating IL-17A and inducing Tregs. Sci Adv. 2019;5:eaaw5422.

Article  PubMed  PubMed Central  Google Scholar 

Liu Z, Mar KB, Hanners NW, Perelman SS, Kanchwala M, Xing C, et al. A NIK-SIX signalling axis controls inflammation by targeted silencing of non-canonical NF-κB. Nature. 2019;568:249–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen S, Seidelin JB, LaCasse EC, Nielsen OH. SMAC mimetics and RIPK inhibitors as therapeutics for chronic inflammatory diseases. Sci Signal. 2020;13:eaax8295.

Article  CAS  PubMed  Google Scholar 

Seidelin JB, Vainer B, Andresen L, Nielsen OH. Upregulation of cIAP2 in regenerating colonocytes in ulcerative colitis. Virchows Arch. 2007;451:1031–8.

Article  CAS  PubMed  Google Scholar 

Seidelin JB, Larsen S, Linnemann D, Vainer B, Coskun M, Troelsen JT, et al. Cellular inhibitor of apoptosis protein 2 controls human colonic epithelial restitution, migration, and Rac1 activation. Am J Physiol Gastrointest Liver Physiol. 2015;308:G92–99.

Article  CAS  PubMed  Google Scholar 

Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9.

Article  CAS  PubMed  Google Scholar 

Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol [Internet]. 2000;1:489–95. http://www.nature.com/articles/ni1200_489. [cited 2022 Dec 1].

Newton K, Multitasking kinase RIPK1 Regulates cell death and inflammation. Cold Spring Harb Perspect Biol [Internet]. 2020;12:a036368. http://cshperspectives.cshlp.org/content/12/3/a036368. [cited 2023 Feb 2].

Baker SJ, Reddy EP. Modulation of life and death by the TNF receptor superfamily. Oncogene. 1998;17:3261–70.

Article  PubMed  Google Scholar 

Hennessy EJ, Adam A, Aquila BM, Castriotta LM, Cook D, Hattersley M et al. Discovery of a novel class of dimeric smac mimetics as potent IAP antagonists resulting in a clinical candidate for the treatment of cancer (AZD5582). J Med Chem [Internet]. 2013;56:9897–919. https://doi.org/10.1021/jm401075x. [cited 2022 Apr 10].

Wang Q, Ye Q, Xi X, Cao X, Wang X, Zhang M et al. KW2449 ameliorates collagen-induced arthritis by inhibiting RIPK1-dependent necroptosis. Front Immunol [Internet]. 2023;14:1135014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040599/. [cited 2023 Aug 22].

Liu Y, Xu Q, Wang Y, Liang T, Li X, Wang D, et al. Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis. 2021;12:62.

Article  PubMed  PubMed Central  Google Scholar 

Wang L, Wang T, Li H, Liu Q, Zhang Z, Xie W, et al. Receptor interacting protein 3-Mediated necroptosis promotes Lipopolysaccharide-Induced inflammation and Acute Respiratory Distress Syndrome in mice. PLoS ONE. 2016;11:e0155723.

Article  PubMed  PubMed Central  Google Scholar 

Liu X, Chen J, Li Z, Gao N, Zhang G. CIAP1/2 can regulate the inflammatory response and lung injury induced by apoptosis in septic rats. J Invest Med [Internet]. 2023;10815589231207102. https://doi.org/10.1177/10815589231207102. [cited 2023 Nov 29].

Abraham MN, Jimenez DM, Fernandes TD, Deutschman CS. Cecal Ligation and puncture alters glucocorticoid receptor expression. Crit Care Med. 2018;46:e797–804.

Article  CAS  PubMed  Google Scholar 

Chen D-Q, Wang Y-N, Vaziri ND, Chen L, Hu H-H, Zhao Y-Y. Poricoic acid a activates AMPK to attenuate fibroblast activation and abnormal extracellular matrix remodelling in renal fibrosis. Phytomedicine. 2020;72:153232.

Article  CAS  PubMed  Google Scholar 

Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44:725–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee EH, Shin MH, Gi M, Park J, Song D, Hyun Y-M, et al. Inhibition of Pendrin by a small molecule reduces Lipopolysaccharide-induced acute lung Injury. Theranostics. 2020;10:9913–22.

Amin P, Florez M, Najafov A, Pan H, Geng J, Ofengeim D et al. Regulation of a distinct activated RIPK1 intermediate bridging complex I and complex II in TNFα-mediated apoptosis. Proc Natl Acad Sci USA [Internet]. 2018;115. https://doi.org/10.1073/pnas.1806973115. [cited 2022 May 9].

Lorente JA, Marshall JC. Neutralization of tumor necrosis factor in preclinical models of sepsis. Shock (Augusta Ga). 2005;24(Suppl 1):107–19.

Article  CAS  PubMed  Google Scholar 

Eichacker PQ, Parent C, Kalil A, Esposito C, Cui X, Banks SM, et al. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am J Resp Crit Care. 2002;166:1197–205.

Article  Google Scholar 

Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Sci (N Y NY). 1985;229:869–71.

Article  CAS  Google Scholar 

Natanson C, Esposito CJ, Banks SM. The sirens’ songs of confirmatory sepsis trials: selection bias and sampling error. Crit Care Med. 1998;26:1927–31.

Article  CAS  PubMed  Google Scholar 

Qiu P, Cui X, Barochia A, Li Y, Natanson C, Eichacker PQ. The evolving experience with therapeutic TNF inhibition in sepsis: considering the potential influence of risk of death. Expert Opin Invest Drugs [Internet]. 2011;20:1555–64. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523300/. [cited 2024 Apr 13].

Wang Q, Fan D, Xia Y, Ye Q, Xi X, Zhang G et al. The latest information on the RIPK1 post-translational modifications and functions. Biomedicine & Pharmacotherapy [Internet]. 2021;142:112082. https://www.sciencedirect.com/science/article/pii/S0753332221008659. [cited 2021 Sep 5].

Delanghe T, Dondelinger Y, Bertrand MJM. RIPK1 kinase-dependent death: a Symphony of Phosphorylation events. Trends Cell Biol. 2020;30:189–200.

Article  CAS  PubMed  Google Scholar 

Simpson DS, Gabrielyan A, Feltham R. RIPK1 ubiquitination: evidence, correlations and the undefined. Seminars in cell & developmental biology [Internet]. 2021;109:76–85. https://linkinghub.elsevier.com/retrieve/pii/S1084952119302411. [cited 2022 Aug 23].

Wang Y, Kanneganti T-D. From pyroptosis, apoptosis and necroptosis to PANoptosis: a mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J [Internet]. 2021;19:4641–57. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405902/. [cited 2023 Feb 19].

Flexible usage and interconnectivity of diverse cell. death pathways protect against intracellular infection. Immunity [Internet]. 2020;53:533–547.e7. https://www.sciencedirect.com/science/article/pii/S1074761320302843. [cited 2024 Jan 19].

Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B, et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front Cell Infect Microbiol. 2020;10:237.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif