Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing

Abdulla EM, Campbell IC (1993) In vitro tests of neurotoxicity. J Pharmacol Toxicol Methods 29(2):69–75. https://doi.org/10.1016/1056-8719(93)90053-h

Article  CAS  PubMed  Google Scholar 

Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M (2017) iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron. https://doi.org/10.1016/j.neuron.2017.03.042

Article  PubMed  PubMed Central  Google Scholar 

Alimohammadi M, Meyburg B, Ückert AK, Holzer AK, Leist M (2023) EFSA Pilot Project on New Approach Methodologies (NAMs) for Tebufenpyrad Risk Assessment. Part 2. Hazard characterization and identification of the Reference Point. EFSA support Publ. EN-7794. 56 pp. https://doi.org/10.2903/sp.efsa.2023.EN-7794

American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington, VA, American Psychiatric Association

Atkins JT, George GC, Hess K, Marcelo-Lewis KL, Yuan Y, Borthakur G, Khozin S, LoRusso P, Hong DS (2020) Pre-clinical animal models are poor predictors of human toxicities in phase 1 oncology clinical trials. Br J Cancer 123(10):1496–1501. https://doi.org/10.1038/s41416-020-01033-x

Article  PubMed  PubMed Central  Google Scholar 

Balls M (2002) Future improvements: replacement in vitro methods. ILAR J 43(Suppl):S69-73. https://doi.org/10.1093/ilar.43.suppl_1.s69

Article  CAS  PubMed  Google Scholar 

Bal-Price A, Crofton KM, Sachana M, Shafer TJ, Behl M, Forsby A, Hargreaves A, Landesmann B, Lein PJ, Louisse J, Monnet-Tschudi F, Paini A, Rolaki A, Schrattenholz A, Suñol C, van Thriel C, Whelan M, Fritsche E (2015) Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 45(1):83–91. https://doi.org/10.3109/10408444.2014.981331

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M (2018) Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. Altex 35(3):306–352

Article  PubMed  PubMed Central  Google Scholar 

Barbosa DJ, Capela JP, de Lourdes BM, Carvahlo F (2015) In vitro models for neurotoxicology research. Toxicol Res 4(4):801–842. https://doi.org/10.1039/c4tx00043a

Article  CAS  Google Scholar 

Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science NY. https://doi.org/10.1126/science.282.5396.2028

Article  Google Scholar 

Bayir E, Sendemir A, Missirlis YF (2019) Mechanobiology of cells and cell systems, such as organoids. Biophys Rev 11(5):721–728. https://doi.org/10.1007/s12551-019-00590-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bell S, Abedini J, Ceger P, Chang X, Cook B, Karmaus AL, Lea I, Mansouri K, Phillips J, McAfee E, Rai R, Rooney J, Sprankle C, Tandon A, Allen D, Casey W, Kleinstreuer N (2020) An integrated chemical environment with tools for chemical safety testing. Toxicol in Vitro. https://doi.org/10.1016/j.tiv.2020.104916

Article  PubMed  PubMed Central  Google Scholar 

Bertotto LB, Catron TR, Tal T (2020) Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. Neurotoxicology 76:235–244. https://doi.org/10.1016/j.neuro.2019.11.008

Article  CAS  PubMed  Google Scholar 

Blum J, Masjosthusmann S, Bartmann K, Bendt F, Dolde X, Dönmez A, Förster N, Holzer AK, Hübenthal U, Keßel HE, Kilic S, Klose J, Pahl M, Stürzl LC, Mangas I, Terron A, Crofton KM, Scholze M, Mosig A, Leist M, Fritsche E (2023) Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.137035

Article  PubMed  Google Scholar 

Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA (2017) Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures. Neuron. https://doi.org/10.1016/j.neuron.2017.04.043

Article  PubMed  PubMed Central  Google Scholar 

Boissart C, Poulet A, Georges P, Darville H, Julita E, Delorme R, Bourgeron T, Peschanski M, Benchoua A (2013) Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening. Transl Psychiatry. https://doi.org/10.1038/tp.2013.71

Article  PubMed  PubMed Central  Google Scholar 

Byun JS, Lee CO, Oh M, Cha D, Kim WK, Oh KJ, Bae KH, Lee SC, Han BS (2020) Rapid differentiation of astrocytes from human embryonic stem cells. Neurosci Lett. https://doi.org/10.1016/j.neulet.2019.134681

Article  PubMed  Google Scholar 

C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C elegans: a platform for investigating biology. Science NY. https://doi.org/10.1126/science.282.5396.2012

Article  Google Scholar 

Capela JP, Carvalho FD (2022) A review on the mitochondrial toxicity of “ecstasy” (3,4-methylenedioxymethamphetamine, MDMA). Curr Res Toxicol. https://doi.org/10.1016/j.crtox.2022.100075

Article  PubMed  PubMed Central  Google Scholar 

Catron TR, Keely SP, Brinkman NE, Zurlinden TJ, Wood CE, Wright JR, Phelps D, Wheaton E, Kvasnicka A, Gaballah S, Lamendella R, Tal T (2019a) Host Developmental Toxicity of BPA and BPA Alternatives Is Inversely Related to Microbiota Disruption in Zebrafish. Toxicol Sci 167(2):468–483. https://doi.org/10.1093/toxsci/kfy261

Article  CAS  PubMed  Google Scholar 

Catron TR, Swank A, Wehmas LC, Phelps D, Keely SP, Brinkman NE, McCord J, Singh R, Sobus J, Wood CE, Strynar M, Wheaton E, Tal T (2019b) Microbiota alter metabolism and mediate neurodevelopmental toxicity of 17β-estradiol. Sci Rep. https://doi.org/10.1038/s41598-019-43346-9

Article  PubMed  PubMed Central  Google Scholar 

Chushak YG, Shows HW, Gearhart JM, Pangburn HA (2018) In silico identification of protein targets for chemical neurotoxins using ToxCast in vitro data and read-across within the QSAR toolbox. Toxicol Res (camb). https://doi.org/10.1039/c7tx00268h

Article  PubMed  Google Scholar 

Coecke S, Goldberg AM, Allen S, Buzanska L, Calamandrei G, Crofton K, Hareng L, Hartung T, Knaut H, Honegger P, Jacobs M, Lein P, Li A, Mundy W, Owen D, Schneider S, Silbergeld E, Reum T, Trnovec T, Monnet-Tschudi F, Bal-Price A (2007) Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ Health Perspect 115(6):924–931. https://doi.org/10.1289/ehp.9427

Article  PubMed  PubMed Central  Google Scholar 

Costa LG (1998) Neurotoxicity testing: a discussion of in vitro alternatives. Environ Health Perspect. https://doi.org/10.1289/ehp.98106505

Article  PubMed  PubMed Central  Google Scholar 

Costa LG, Giordano G (2007) Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology 28(6):1047–1067. https://doi.org/10.1016/j.neuro.2007.08.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crofton KM (2008) Thyroid disrupting chemicals: mechanisms and mixtures. Int J Androl 31(2):209–223. https://doi.org/10.1111/j.1365-2605.2007.00857.x

Article  CAS  PubMed  Google Scholar 

Crofton KM, Bassan A, Behl M, Chushak YG, Fritsche E, Gearhart JM, Marty MS, Mumtaz M, Pavan M, Ruiz P, Sachana M, Selvam R, Shafer TJ, Stavitskaya L, Szabo DT, Szabo ST, Tice RR, Wilson D, Woolley D, Myatt GJ (2022) Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. Comput Toxicol. https://doi.org/10.1016/j.comtox.2022.100223

Article  PubMed  PubMed Central  Google Scholar 

Crofton KM and Mundy WR (2021) External Scientific Report on the Interpretation of Data from the Developmental Neurotoxicity In Vitro Testing Assays for Use in Integrated Approaches for Testing and Assessment. EFSA support Publ. EN-7794. 18, 6924E. https://doi.org/10.2903/SP.EFSA.2021.EN-6924

Cronin MT (1996) Quantitative structure-Activity relationship (QSAR) analysis of the acute sublethal neurotoxicity of solvents. Toxicol in Vitro 10(2):103–110. https://doi.org/10.1016/0887-2333(95)00109-3

Article  CAS  PubMed  Google Scholar 

Cronin MT, Bajot F, Enoch SJ, Madden JC, Roberts DW, Schwöbel J (2009) The in chemico-in silico interface: challenges for integrating experimental and computational chemistry to identify toxicity. Altern Lab Anim 37(5):513–521. https://doi.org/10.1177/026119290903700508

Article  CAS  PubMed  Google Scholar 

Cronin MTD, Enoch SJ, Mellor CL, Przybylak KR, Richarz AN, Madden JC (2017) In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects. Toxicol Res 33(3):173–182. https://doi.org/10.5487/TR.2017.33.3.173

Article  PubMed  PubMed Central  Google Scholar 

Cronin MTD, Bauer FJ, Bonnell M, Campos B, Ebbrell DJ, Firman JW, Gutsell S, Hodges G, Patlewicz G, Sapounidou M, Spînu N, Thomas PC, Worth AP (2022) A scheme to evaluate structural alerts to predict toxicity: Assessing confidence by characterising uncertainties. Regul Toxicol Pharmacol. https://doi.org/10.1016/j.yrtph.2022.105249

Article  PubMed  PubMed Central  Google Scholar 

d’Amora M, Giordani S (2018) The Utility of Zebrafish as a Model for Screening Developmental Neurotoxicity. Front Neurosci 12:976. https://doi.org/10.3389/fnins.2018.00976

Article  PubMed  PubMed Central  Google Scholar 

Dasgupta S, Simonich MT, Tanguay RL (2022) Zebrafish Behavioral Assays in Toxicology. Methods Mol Biol 2474:109–122. https://doi.org/10.1007/978-1-0716-2213-1_11

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif