Baciewicz AM, Chrisman CR, Finch CK, Self TH (2008) Update on rifampin and rifabutin drug interactions. Am J Med Sci 335:126–136. https://doi.org/10.1097/MAJ.0b013e31814a586a
Barluenga J, Aznar F, García A, Cabal M, Palacios JJ, Menéndez M (2006) New rifabutin analogs: synthesis and biological activity against Mycobacterium tuberculosis. Bioorg Med Chem Lett 16:5717–5722. https://doi.org/10.1016/j.bmcl.2006.08.090
Article CAS PubMed Google Scholar
Chen Y, Ferguson SS, Negishi M, Goldstein JA (2003) Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter. Mol Pharmacol 64:316–324. https://doi.org/10.1124/mol.64.2.316
Article CAS PubMed Google Scholar
Chen Y, Ferguson SS, Negishi M, Goldstein JA (2004) Induction of human CYP2C9 by rifampicin, hyperforin, and phenobarbital is mediated by the pregnane X receptor. J Pharmacol Exp Ther 308:495–501. https://doi.org/10.1124/jpet.103.058818
Article CAS PubMed Google Scholar
Committee for Medicinal Products for Human Use, European Medicines Agency, Guideline on the investigation of drug interactions, 2012, CPMP/EWP/560/95/Rev. 1 Corr. 2**. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf (Accessed on 5 February 2024)
Dooley KE, Sayre P, Borland J, Purdy E, Chen S, Song I, Peppercorn A, Everts S, Piscitelli S, Charles FC (2013) Safety, tolerability, and pharmacokinetics of the HIV integrase inhibitor dolutegravir given twice daily with rifampin or once daily with rifabutin: Results of a phase 1 study among healthy subjects. J Acquir Immune Defic Syndr 62:21–27. https://doi.org/10.1097/QAI.0b013e318276cda9
Article CAS PubMed Google Scholar
Duszenko M, Kang X, Böhme U, Hömke R, Lehner M (1999) In vitro translation in a cell-free system from Trypanosoma brucei yields glycosylated and glycosylphosphatidylinositol-anchored proteins. Eur J Biochem 266:789–797. https://doi.org/10.1046/j.1432-1327.1999.00897.x
Article CAS PubMed Google Scholar
Dyavar SR, Mykris TM, Winchester LC, Scarsi KK, Fletcher CV, Podany AT (2020) Hepatocytic transcriptional signatures predict comparative drug interaction potential of rifamycin antibiotics. Sci Rep 10:12565. https://doi.org/10.1038/s41598-020-69228-z
Article CAS PubMed PubMed Central Google Scholar
Ferguson SS, Chen Y, LeCluyse EL, Negishi M, Goldstein JA (2005) Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4α. Mol Pharmacol 68:747–757. https://doi.org/10.1124/mol.105.013169
Article CAS PubMed Google Scholar
Finch CK, Chrisman CR, Baciewicz AM, Self TH (2002) Rifampin and rifabutin drug interactions: an update. Arch Intern Med 162:985–992. https://doi.org/10.1001/archinte.162.9.985
Article CAS PubMed Google Scholar
Healan AH, Griffis JM, Proskin HM, O’Riordan MA, Gray WA, Salata RA, Blumer JL (2017) Impact of rifabutin or rifampin on bedaquiline safety, tolerability, and pharmacokinetics assessed in a randomized clinical trial with heala thy adult volunteers. Antimicrob Agents Chemother 21:855–917
Horne DJ, Spitters C, Narita M (2019) Experience with rifabutin replacing rifampin in the treatment of tuberculosis. Antimicrob Agents Chemother 63:1319–1419
International council for harmonisation of technical requirements for pharmaceuticals for human use. ICH harmonized guideline Drug Interaction Studies M12. Available online: https://database.ich.org/sites/default/files/M12_Step1_draft_Guideline_2022_0524.pdf (Accessed on 5 February 2024).
Kenny MT, Strates B (1981) Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev 12:159–218. https://doi.org/10.3109/03602538109011084
Article CAS PubMed Google Scholar
Kraft WK, McCrea JB, Winchell GA, Carides A, Lowry R, Woolf EJ, Kusma SE, Deutsch PJ, Greenberg HE, Waldman SA (2004) Indinavir and rifabutin drug interactions in healthy volunteers. J Clin Pharmacol 44:305–313. https://doi.org/10.1177/0091270003262807
Article CAS PubMed Google Scholar
LeBel M, Masson E, Guilbert E, Colborn D, Paquet F, Allard S, Vallée F, Narang PK (1998) Effects of rifabutin and rifampicin on the pharmacokinetics of ethinylestradiol and norethindrone. J Clin Pharmacol 11:1042–1050. https://doi.org/10.1177/009127009803801109
LeCluyse EL, Alexandre E, Hamilton GA, Viollon-Abadie C, Coon DJ, Jolley S, Richert L (2005) Isolation and culture of primary human hepatocytes. Methods Mol Biol 290:207–229. https://doi.org/10.1385/1-59259-838-2:207
Li AP, Reith MK, Rasmussen A, Gorski GC, Hall SD, Xu L, Kaminski DL, Cheng LK (1997) Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in cytochrome P450 induction potential of xenobiotics: evaluation of rifampin, rifapentine and rifabutin. Chem Biol Interact 107:17–30
Article CAS PubMed Google Scholar
Li D, Tolleson WH, Yu D, Chen S, Guo L, Xiao W, Tong W, Ning B (2019) Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 37:180–214. https://doi.org/10.1080/10590501.2019.1639481
Article CAS PubMed PubMed Central Google Scholar
Lutz JD, Kirby BJ, Wang L, Song Q, Ling J, Massetto B, Worth A, Kearney BP, Mathias A (2018a) Cytochrome P450 3A induction predicts P-glycoprotein induction; Part 1: Establishing induction relationships using ascending dose rifampin. Clin Pharmacol Ther 104:1182–1190. https://doi.org/10.1002/cpt.1073
Article CAS PubMed PubMed Central Google Scholar
Lutz JD, Kirby BJ, Wang L, Song Q, Ling J, Massetto B, Worth A, Kearney BP, Mathias A (2018b) Cytochrome P450 3A induction predicts P-glycoprotein induction; Part 2: Prediction of decreased substrate exposure after rifabutin or carbamazepine. Clin Pharmacol Ther 104:1191–1198. https://doi.org/10.1002/cpt.1072
Article CAS PubMed PubMed Central Google Scholar
Morishima Y, Peng H, Lin H-l, Hollenberg PF, Sunahara RK, Osawa Y, Pratt WB (2005) Regulation of cytochrome P450 2E1 by heat shock protein 90-dependent stabilization and CHIP-dependent proteasomal degradation. Biochem 44:16333–16340
Nilles J, Weiss J, Sauter M, Haefeli WE, Ruez S, Theile D (2023) Comprehensive in vitro analysis evaluating the variable drug-drug interaction risk of rifampicin compared to rifabutin. Arch Toxicol 97:2219–2230. https://doi.org/10.1007/s00204-023-03531-2
Article CAS PubMed PubMed Central Google Scholar
Pan Y, Gao W, Yu A (2009) MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab Dispos 37:2112–2117. https://doi.org/10.1124/dmd.109.027680
Article CAS PubMed PubMed Central Google Scholar
Pessayre D, Larrey D, Vitaux J, Breil P, Belghiti J, Benhamou J (1982) Formation of an inactive cytochrome P-450 Fe(II)-metabolite complex after administration of troleandomycin in humans. Biochem Pharmacol 31:1699–1704. https://doi.org/10.1016/0006-2952(82)90671-2
Article CAS PubMed Google Scholar
Polk RE, Brophy DF, Israel DS, Patron R, Sadler BM, Chittick GE, Symonds WT, Lou Y, Kristoff D, Stein DS (2001) Pharmacokinetic Interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob Agents Chemother 45:502–508. https://doi.org/10.1128/AAC.45.2.502-508.2001
Article CAS PubMed PubMed Central Google Scholar
Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75. https://doi.org/10.1016/s0092-8674(00)80314-1
Article CAS PubMed Google Scholar
Ramamoorthy A, Liu Y, Philips S, Desta Z, Lin H, Goswami C, Gaedigk A, Li L, Flockhart DA, Skaar TC (2013) Regulation of microRNA expression by rifampin in human hepatocytes. Drug Metab Dispos 41:1763–1768. https://doi.org/10.1124/dmd.113.052886
Article CAS PubMed PubMed Central Google Scholar
Reinach B, Sousa G, Dostert P, Ings R, Gugenheim J, Rahmani R (1999) Comparative effects of rifabutin and rifampicin on cytochromes P450 and UDP-glucuronosyl-transferases expression in fresh and cryopreserved human hepatocytes. Chem Biol Interact 121:37–48. https://doi.org/10.1016/S0009-2797(99)00089-7
Article CAS PubMed Google Scholar
Savaryn JP, Sun J, Ma J, Jenkins GJ, Stresser DM (2022) Broad application of CYP3A4 liquid chromatography-mass spectrometry protein quantification in hepatocyte cytochrome P450 induction assays identifies nonuniformity in mRNA and protein induction responses. Drug Metab Dispos 50:105–113. https://doi.org/10.1124/dmd.121.000638
Article CAS PubMed Google Scholar
Schaefer O, Ohtsuki S, Kawakami H, Inoue T, Liehner S, Saito A, Atsushi SA, Ishiguro N, Matsumaru T, Terasaki T, Ebner T (2012) Absolute quantification and differential expression of drug transporters, cytochrome P450 enzymes, and UDP-glucuronosyltransferases in cultured primary human hepatocytes. Drug Metab Dispos 40:93–103. https://doi.org/10.1124/dmd.111.042275
Article CAS PubMed Google Scholar
Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360. https://doi.org/10.1038/nrm.2017.20
Article CAS PubMed Google Scholar
Sekaggya-Wiltshire C, Dooley KE (2019) Pharmacokinetic and pharmacodynamic considerations of rifamycin antibiotics for the treatment of tuberculosis. Expert Opin Drug Metabo Toxicol 15:615–618. https://doi.org/10.1080/17425255.2019.1648432
Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90–geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell 89:239–250. https://doi.org/10.1016/s0092-8674(00)80203-2
Comments (0)