Vailati-Riboni M, Palombo V, Loor JJ. What are omics sciences? In: Periparturient diseases of dairy cows. Cham: Springer International Publishing; 2017. p. 1–7.
Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics. 2020;47:69–83. https://doi.org/10.1016/j.jgg.2019.11.009.
Article CAS PubMed Google Scholar
Gallart‐Ayala H, Teav T, Ivanisevic J. Metabolomics meets lipidomics: assessing the small molecule component of metabolism. BioEssays. 2020;42. https://doi.org/10.1002/bies.202000052.
Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36:316–20. https://doi.org/10.1038/nbt.4101.
Article CAS PubMed PubMed Central Google Scholar
Heiles S. Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications. Anal Bioanal Chem. 2021;413:5927–48. https://doi.org/10.1007/s00216-021-03425-1.
Article CAS PubMed PubMed Central Google Scholar
Rakusanova S, Fiehn O, Cajka T. Toward building mass spectrometry-based metabolomics and lipidomics atlases for biological and clinical research. TrAC Trends Anal Chem. 2023;158:116825. https://doi.org/10.1016/j.trac.2022.116825.
Ribbenstedt A, Ziarrusta H, Benskin JP. Development, characterization and comparisons of targeted and non-targeted metabolomics methods. PLoS One. 2018;13:e0207082. https://doi.org/10.1371/journal.pone.0207082.
Article CAS PubMed PubMed Central Google Scholar
Gertsman I, Barshop BA. Promises and pitfalls of untargeted metabolomics. J Inherit Metab Dis. 2018;41:355–66. https://doi.org/10.1007/s10545-017-0130-7.
Article CAS PubMed PubMed Central Google Scholar
Deschamps E, Calabrese V, Schmitz I, Hubert-Roux M, Castagnos D, Afonso C. Advances in ultra-high-resolution mass spectrometry for pharmaceutical analysis. Molecules. 2023;28:2061. https://doi.org/10.3390/molecules28052061.
Article CAS PubMed PubMed Central Google Scholar
Chaleckis R, Meister I, Zhang P, Wheelock CE. Challenges, progress and promises of metabolite annotation for LC–MS-based metabolomics. Curr Opin Biotechnol. 2019;55:44–50. https://doi.org/10.1016/j.copbio.2018.07.010.
Article CAS PubMed Google Scholar
Guo J, Huan T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography–mass spectrometry based untargeted metabolomics. Anal Chem. 2020;92:8072–80. https://doi.org/10.1021/acs.analchem.9b05135.
Article CAS PubMed Google Scholar
Wang R, Yin Y, Zhu Z-J. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem. 2019;411:4349–57. https://doi.org/10.1007/s00216-019-01709-1.
Article CAS PubMed Google Scholar
Barbier Saint Hilaire P, Rousseau K, Seyer A, Dechaumet S, Damont A, Junot C, Fenaille F. Comparative evaluation of data dependent and data independent acquisition workflows implemented on an Orbitrap Fusion for untargeted metabolomics. Metabolites. 2020;10:158. https://doi.org/10.3390/metabo10040158.
Article CAS PubMed PubMed Central Google Scholar
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–6. https://doi.org/10.1038/nmeth.3393.
Article CAS PubMed PubMed Central Google Scholar
Yin Y, Wang R, Cai Y, Wang Z, Zhu Z-J. DecoMetDIA: deconvolution of multiplexed MS/MS spectra for metabolite identification in SWATH-MS-based untargeted metabolomics. Anal Chem. 2019;91:11897–904. https://doi.org/10.1021/acs.analchem.9b02655.
Article CAS PubMed Google Scholar
Stancliffe E, Schwaiger-Haber M, Sindelar M, Patti GJ. DecoID improves identification rates in metabolomics through database-assisted MS/MS deconvolution. Nat Methods. 2021;18:779–87. https://doi.org/10.1038/s41592-021-01195-3.
Article CAS PubMed PubMed Central Google Scholar
Tada I, Chaleckis R, Tsugawa H, Meister I, Zhang P, Lazarinis N, Dahlén B, Wheelock CE, Arita M. Correlation-based deconvolution (CorrDec) to generate high-quality MS2 spectra from data-independent acquisition in multisample studies. Anal Chem. 2020;92:11310–7. https://doi.org/10.1021/acs.analchem.0c01980.
Article CAS PubMed Google Scholar
Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J, Ewald CJ, Fraser PD, Giavalisco P, Hall RD, Heinemann M, Link H, Luo J, Neumann S, Nielsen J, Perez de Souza L, Saito K, Sauer U, Schroeder FC, Schuster S, Siuzdak G, Skirycz A, Sumner LW, Snyder MP, Tang H, Tohge T, Wang Y, Wen W, Wu S, Xu G, Zamboni N, Fernie AR. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods. 2021;18:747–56. https://doi.org/10.1038/s41592-021-01197-1.
Article CAS PubMed PubMed Central Google Scholar
Hoskisson PA, Seipke RF. Cryptic or silent? The known unknowns, unknown knowns, and unknown unknowns of secondary metabolism. mBio. 2020;11. https://doi.org/10.1128/mBio.02642-20.
Little JL, Cleven CD, Brown SD. Identification of “known unknowns” utilizing accurate mass data and chemical abstracts service databases. J Am Soc Mass Spectrom. 2011;22:348–59. https://doi.org/10.1007/s13361-010-0034-3.
Article CAS PubMed Google Scholar
Little JL, Williams AJ, Pshenichnov A, Tkachenko V. Identification of “known unknowns” utilizing accurate mass data and ChemSpider. J Am Soc Mass Spectrom. 2012;23:179–85. https://doi.org/10.1007/s13361-011-0265-y.
Article CAS PubMed Google Scholar
Perez De Souza L, Alseekh S, Brotman Y, Fernie AR. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Rev Proteomics. 2020;17:243–55. https://doi.org/10.1080/14789450.2020.1766975.
Article CAS PubMed Google Scholar
Phelan VV. Feature-based molecular networking for metabolite annotation. 2020;227–243.
Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F, Aksenov AA, Alka O, Allard P-M, Barsch A, Cachet X, Caraballo-Rodriguez AM, Da Silva RR, Dang T, Garg N, Gauglitz JM, Gurevich A, Isaac G, Jarmusch AK, Kameník Z, Bin KK, Kessler N, Koester I, Korf A, Le Gouellec A, Ludwig M, Martin HC, McCall L-I, McSayles J, Meyer SW, Mohimani H, Morsy M, Moyne O, Neumann S, Neuweger H, Nguyen NH, Nothias-Esposito M, Paolini J, Phelan VV, Pluskal T, Quinn RA, Rogers S, Shrestha B, Tripathi A, van der Hooft JJJ, Vargas F, Weldon KC, Witting M, Yang H, Zhang Z, Zubeil F, Kohlbacher O, Böcker S, Alexandrov T, Bandeira N, Wang M, Dorrestein PC. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905–8. https://doi.org/10.1038/s41592-020-0933-6.
Article CAS PubMed PubMed Central Google Scholar
Quinn RA, Nothias L-F, Vining O, Meehan M, Esquenazi E, Dorrestein PC. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci. 2017;38:143–54. https://doi.org/10.1016/j.tips.2016.10.011.
Article CAS PubMed Google Scholar
Olivon F, Elie N, Grelier G, Roussi F, Litaudon M, Touboul D. MetGem software for the generation of molecular networks based on the t-SNE algorithm. Anal Chem. 2018;90:13900–8. https://doi.org/10.1021/acs.analchem.8b03099.
Article CAS PubMed Google Scholar
Elie N, Santerre C, Touboul D. Generation of a molecular network from electron ionization mass spectrometry data by combining MZmine2 and MetGem software. Anal Chem. 2019;91:11489–92. https://doi.org/10.1021/acs.analchem.9b02802.
Article CAS PubMed Google Scholar
Neto FC, Raftery D. Expanding urinary metabolite annotation through integrated mass spectral similarity networking. Anal Chem. 2021;93:12001–10. https://doi.org/10.1021/acs.analchem.1c02041.
Article CAS PubMed PubMed Central Google Scholar
Le Daré B, Ferron P-J, Allard P-M, Clément B, Morel I, Gicquel T. New insights into quetiapine metabolism using molecular networking. Sci Rep. 2020;10:19921. https://doi.org/10.1038/s41598-020-77106-x.
Article CAS PubMed PubMed Central Google Scholar
Hayes RN, Gross ML. [10] Collision-induced dissociation. 1990;237–263.
Martín-Sómer A, Yáñez M, Gaigeot M-P, Spezia R. Unimolecular fragmentation induced by low-energy collision: statistically or dynamically driven? J Phys Chem A. 2014;118:10882–93. https://doi.org/10.1021/jp5076059.
Article CAS PubMed Google Scholar
Zhou Z, Luo M, Chen X, Yin Y, Xiong X, Wang R, Zhu Z-J. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics. Nat Commun. 2020;11:4334. https://doi.org/10.1038/s41467-020-18171-8.
Article CAS PubMed PubMed Central Google Scholar
Calabrese V, Schmitz-Afonso I, Prevost C, Afonso C, Elomri A. Molecular networking and collision cross section prediction for structural isomer and unknown compound identification in plant metabolomics: a case study applied to Zhanthoxylum heitzii extracts. Anal Bioanal Chem. 2022;414:4103–18. https://doi.org/10.1007/s00216-022-04059-7.
Comments (0)