GC × GC-HRMS with complementary ionization methods in the suspect screening analysis of fragrance allergens: overwhelming or justified?

Fahlbusch K-G, Hammerschmidt F-J, Panten J, Pickenhagen W, Schatkowski D, Bauer K, Garbe D, Surburg H. Flavors and fragrances. In: Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2012, pp. 74–198. https://doi.org/10.1002/14356007.a11_141.

SCCS (Scientific Committee on Consumer Safety). Opinion on fragrance allergens in cosmetic products. European Commission. 2012. https://health.ec.europa.eu/system/files/2016-11/sccs_o_102_0.pdf. Accessed on 30 April 2024.

Chaintreau A, Joulain D, Marin C, Schmidt CO, Vey M. GC/MS quantitation of fragrance compounds suspected to cause skin reactions. 1. J Agric Food Chem. 2003;51:6398–6403. https://doi.org/10.1021/jf030363t.

Bassereau M, Chaintreau A, Duperrex S, Joulain D, Leijs H, Loesing G, Owen N, Sherlock A, Schippa C, Thorel P-J, Vey M. GC-MS quantification of suspected volatile allergens in fragrances. 2. Data treatment strategies and method performances. J Agric Food Chem. 2007;55:25–31. https://doi.org/10.1021/jf062028l.

Article  CAS  PubMed  Google Scholar 

Rubiolo P, Liberto E, Sgorbini B, Russo R, Veuthey J-L, Bicchi C. Fast-GC-conventional quadrupole mass spectrometry in essential oil analysis. J Sep Sci. 2008;31:1074–84. https://doi.org/10.1002/jssc.200700577.

Article  CAS  PubMed  Google Scholar 

Rubiolo P, Cagliero C, Cordero C, Liberto E, Sgorbini B, Bicchi C. Gas chromatography in the analysis of flavours and fragrances. In: Dettmer-Wilde K, Engewald W, editors. Practical gas chromatography. Berlin, Heidelberg: Springer; 2014. pp 717–743. https://doi.org/10.1007/978-3-642-54640-2_20.

Adams RP Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream: Allured; 2007, pp 804.

Costa R, De Fina M, Valentino MR, Dugo P, Mondello L. Reliable identification of terpenoids and related compounds by using linear retention indices interactively with mass spectrometry search. Nat Prod Commun. 2007;2:413–8. https://doi.org/10.1177/1934578X0700200412.

Article  CAS  Google Scholar 

Bicchi C, Liberto E, Matteodo M, Sgorbini B, Mondello L, Zellner BA, Costa R, Rubiolo P. Quantitative analysis of essential oils: a complex task. Flavour Fragr J. 2008;23:382–91. https://doi.org/10.1002/ffj.1905.

Article  CAS  Google Scholar 

Mota MFS, Waktola HD, Nolvachai Y, Marriott PJ. Gas chromatography - mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. TrAC Trends Anal Chem. 2021;138: 116238. https://doi.org/10.1016/j.trac.2021.116238.

Article  CAS  Google Scholar 

The International Fragrance Association (IFRA). Analytical method to quantify 57 suspected allergens (and isomers) in ready to inject fragrance materials by gas chromatography and mass spectroscopy, 2016.

Zellner BA, Bicchi C, Dugo P, Rubiolo P, Dugo G, Mondello L. Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr J. 2008;23:297–314. https://doi.org/10.1002/ffj.1887.

Article  CAS  Google Scholar 

Yan D, Wong YF, Shellie RA, Marriott PJ, Whittock SP, Koutoulis A. Assessment of the phytochemical profiles of novel hop (Humulus lupulus L.) cultivars: a potential route to beer crafting. Food Chem. 2019;275:15–23. https://doi.org/10.1016/j.foodchem.2018.09.082.

Article  CAS  PubMed  Google Scholar 

Lebedev AT, Polyakova OV, Mazur DM, Artaev VB. The benefits of high resolution mass spectrometry in environmental analysis. Analyst. 2013;138:6946–53. https://doi.org/10.1039/C3AN01237A.

Article  CAS  PubMed  Google Scholar 

França D, Coutinho DM, Barra TA, Xavier RS, Azevedo DA. Molecular-level characterization of Brazilian pre-salt crude oils by advanced analytical techniques. Fuel. 2021;293: 120474. https://doi.org/10.1016/j.fuel.2021.120474.

Article  CAS  Google Scholar 

Dimandja JMD. Introduction and historical background: the “inside” story of comprehensive two-dimensional gas chromatography. Chapter 1. In: Snow NH, editor. Basic multidimensional gas chromatography. Separation Science and Technology, Cambridge: Academic Press; 2020. 12, pp. 1–40. https://doi.org/10.1016/B978-0-12-813745-1.00001-5.

Mohler RE, Ahn S, O’Reilly K, Zemo DA, Devine CE, Magaw R, Sihota N. Towards comprehensive analysis of oxygen containing organic compounds in groundwater at a crude oil spill site using GC×GC-TOFMS and Orbitrap ESI-MS. Chemosphere. 2020;244: 125504. https://doi.org/10.1016/j.chemosphere.2019.125504.

Article  CAS  PubMed  Google Scholar 

Winnike JH, Wei X, Knagge KJ, Colman SD, Gregory SG, Zhang X. Comparison of GC-MS and GC×GC-MS in the analysis of human serum samples for biomarker discovery. J Proteome Res. 2015;14:1810–7. https://doi.org/10.1021/pr5011923.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veenaas C, Haglund P. Methodology for non-target screening of sewage sludge using comprehensive two-dimensional gas chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem. 2017;409:4867–83. https://doi.org/10.1007/s00216-017-0429-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazur DM, Polyakova OV, Artaev VB, Lebedev AT. Novel pollutants in the Moscow atmosphere in winter period: gas chromatography-high resolution time-of-flight mass spectrometry study. Environ Pollut. 2017;222:242–50. https://doi.org/10.1016/j.envpol.2016.12.049.

Article  CAS  PubMed  Google Scholar 

Mazur DM, Latkin TB, Kosyakov DS, Kozhevnikov AYu, Ul’yanovskii NV, Kirilov AG, Lebedev AT. Arctic snow pollution: a GC-HRMS case study of Franz Joseph Land archipelago. Environ Pollut. 2020;265:114885. https://doi.org/10.1016/j.envpol.2020.114885.

Mazur DM, Sosnova AA, Latkin TB, Artaev VB, Siek K, Koluntaev DA, Lebedev AT. Application of clusterization algorithms for analysis of semivolatile pollutants in Arkhangelsk snow. Anal Bioanal Chem. 2023;415:2587–99. https://doi.org/10.1007/s00216-022-04390-z.

Article  CAS  PubMed  Google Scholar 

Bileck A, Verouti SN, Escher G, Vogt B, Groessl M. A comprehensive urinary steroid analysis strategy using two-dimensional gas chromatography – time of flight mass spectrometry. Analyst. 2018;143:4484–94. https://doi.org/10.1039/C7AN01990D.

Article  CAS  PubMed  Google Scholar 

Yan D, Wong YF, Tedone L, Shellie RA, Marriott PJ, Whittock SP, Koutoulis A. Chemotyping of new hop (Humulus lupulus L.) genotypes using comprehensive two-dimensional gas chromatography with quadrupole accurate mass-time-of-flight mass spectrometry. J Chromatogr A. 2018;1536:110–21. https://doi.org/10.1016/j.chroma.2017.08.020.

Article  CAS  PubMed  Google Scholar 

Arena A, Ferracane A, Zoccali M, Obkircher M, Sprecher H, Tranchida PQ, Mondello L. Direct extraction with acetonitrile of hemp seed oil for the analysis of pesticides by using comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry. J Chromatogr A. 2023;1710: 464432. https://doi.org/10.1016/j.chroma.2023.464432.

Article  CAS  PubMed  Google Scholar 

Arena A, Zoccali M, Mondello L, Tranchida PQ. A method for the determination of 70 pesticides in extra virgin olive oil based on a limited-volume solvent extraction step prior to comprehensive two-dimensional gas chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2022;415:2459–69. https://doi.org/10.1007/s00216-022-04494-6.

Article  CAS  PubMed  Google Scholar 

Cordero C, Liberto E, Bicchi C, Rubiolo P, Schieberle P, Reichenbach SE, Tao Q. Profiling food volatiles by comprehensive two-dimensional gas chromatography coupled with mass spectrometry: advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different origin. J Chromatogr A. 2010;1217:5848–58. https://doi.org/10.1016/j.chroma.2010.07.006.

Article  CAS  PubMed  Google Scholar 

Cordero C, Liberto E, Bicchi C, Rubiolo P, Reichenbach SE, Tian X, Tao Q. Targeted and non-targeted approaches for complex natural sample profiling by GC×GC-qMS. J Chromatogr Sci. 2010;48:251–61. https://doi.org/10.1093/chromsci/48.4.251.

Article  CAS  PubMed  Google Scholar 

Shellie R, Marriott P. Opportunities for ultrahigh resolution analysis of essential oils using comprehensive two dimensional gas chromatography: a review. Flavour Fragr J. 2003;18:179–91. https://doi.org/10.1002/ffj.1225.

Article  CAS  Google Scholar 

Cordero C, Bicchi C, Rubiolo P. Group-type and fingerprint analysis of roasted food matrices (coffee and hazelnut samples) by comprehensive two-dimensional gas chromatography. J Agric Food Chem. 2008;56:7655–66. https://doi.org/10.1021/jf801001z.

Article  CAS  PubMed  Google Scholar 

Shellie R, Marriott PJ, Chaintreau A. Quantitation of suspected allergens in fragrances (Part I): evaluation of comprehensive two-dimensional gas chromatography for quality control. Flavour Fragr J. 2004;19(2):91–8. https://doi.org/10.1002/ffj.1334.

Article  CAS  Google Scholar 

Debonneville C, Chaintreau AJ. Quantitation of suspected allergens in fragrances: Part II. Evaluation of comprehensive gas chromatography–conventional mass spectrometry. J Chromatogr A. 2004;1027(1–2):109–15. https://doi.org/10.1016/j.chroma.2003.08.080.

Article  CAS  PubMed  Google Scholar 

Prebihalo SE, Reaser BC, Gough DV. Multidimensional gas chromatography: benefits and considerations for current and prospective users. LCGC North America. 2022;40:508–513. https://doi.org/10.56530/lcgc.na.zi3478f2.

Amaral MSS, Nolvachai Y, Marriott PJ. Comprehensive two-dimensional gas chromatography advances in technology and applications: biennial update. Anal Chem. 2020;92:85–104. https://doi.org/10.1021/acs.analchem.9b05412.

Article  CAS 

Comments (0)

No login
gif