Role of CRISPR/Cas9 based therapy in breast cancer: a future direction

Bhat AA, Nisar S, Mukherjee S, Saha N, Yarravarapu N, Lone SN, Masoodi T, Chauhan R, Maacha S, Bagga P, Dhawan P, Akil AAS, El-Rifai W, Uddin S, Reddy R, Singh M, Macha MA, Haris M. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. 2022. https://doi.org/10.1186/s12967-022-03765-1.

Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva JF, Fernandez S, McGlynn P, Helleday T. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 2009;28:2601–15. https://doi.org/10.1038/emboj.2009.206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–7. https://doi.org/10.1038/nature03443.

Article  CAS  PubMed  Google Scholar 

Cai J, Huang S, Yi Y, Bao S. Ultrasound microbubble-mediated CRISPR/Cas9 knockout of C-erbB-2 in HEC-1A cells. J Int Med Res. 2019;47:2199–206. https://doi.org/10.1177/0300060519840890.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlk MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-ospina N, Mantri S, Dinu MP, Weinberg KI, Porteus MH. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25:249–54. https://doi.org/10.1038/s41591-018-0326-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheang MCU, Voduc KD, Tu D, Jiang S, Leung S, Chia SK, Shepherd LE, Levine MN, Pritchard KI, Davies S, Stijleman IJ, Davis C, Ebbert MTW, Parker JS, Ellis MJ, Bernard PS, Perou CM, Nielsen TO. Responsiveness of intrinsic subtypes to adjuvant anthracycline substitution in the NCIC.CTG MA.5 randomized trial. Clin Cancer Res. 2012;18:2402–12. https://doi.org/10.1158/1078-0432.CCR-11-2956.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. 2024. https://doi.org/10.1186/s12943-024-01961-9.

Chen X, Liu J, Janssen JM, Gonçalves MAFV. The chromatin structure differentially impacts high-specificity CRISPR-Cas9 nuclease strategies. Mol Ther Nucleic Acids. 2017;8:558–63. https://doi.org/10.1016/j.omtn.2017.08.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip Rev Syst Biol Med. 2018;10:1–23. https://doi.org/10.1002/wsbm.1408.

Article  CAS  Google Scholar 

Chin JS, Chooi WH, Wang H, Ong W, Leong KW, Chew SY. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing. Acta Biomater. 2019;90:60–70. https://doi.org/10.1016/j.actbio.2019.04.020.

Article  CAS  PubMed  Google Scholar 

Cho B, Han Y, Lian M, Colditz GA, Weber JD, Ma C, Liu Y. Evaluation of racial/ethnic differences in treatment and mortality among women with triple-negative breast cancer. JAMA Oncol. 2021;7:1016–23. https://doi.org/10.1001/jamaoncol.2021.1254.

Article  PubMed  Google Scholar 

Dai M, Yan G, Wang N, Daliah G, Edick AM, Poule S, Boudreault J, Ali S, Burgos SA, Lebrun JJ. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-23316-4.

Article  PubMed  PubMed Central  Google Scholar 

Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51. https://doi.org/10.1038/nrg.2016.49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamidi H, Ivaska J. Every step of the way: Integrins in cancer progression and metastasis. Nat Rev Cancer. 2018;18:533–48. https://doi.org/10.1038/s41568-018-0038-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Havas KM, Milchevskaya V, Radic K, Alladin A, Kafkia E, Garcia M, Stolte J, Klaus B, Rotmensz N, Gibson TJ, Burwinkel B, Schneeweiss A, Pruneri G, Patil KR, Sotillo R, Jechlinger M. Metabolic shifts in residual breast cancer drive tumor recurrence. J Clin Invest. 2017;127:2091–105. https://doi.org/10.1172/JCI89914.

Article  PubMed  PubMed Central  Google Scholar 

Heitink L, Whittle JR, Vaillant F, Capaldo BD, Dekkers JF, Dawson CA, Milevskiy MJG, Surgenor E, Tsai M, Chen HR, Christie M, Chen Y, Smith GK, Herold MJ, Strasser A, Lindeman JG, Visvader JE. In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Mol Oncol. 2022;16:1119–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70. https://doi.org/10.1126/science.1179555.

Article  CAS  PubMed  Google Scholar 

Huang J, Zhou Y, Li J, Lu A, Liang C. CRISPR/Cas systems: Delivery and application in gene therapy. Front Bioeng Biotechnol. 2022;10:1–21. https://doi.org/10.3389/fbioe.2022.942325.

Article  Google Scholar 

Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewen MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Orrico AR, Dreher D, Palazzo JP, Perrear L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006. https://doi.org/10.1186/1471-2164-7-96.

Article  PubMed  PubMed Central  Google Scholar 

Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, Wang L, Jiang X, Shen H, He D, Li K, Xi L, Ma D, Wang H. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int. 2014. https://doi.org/10.1155/2014/612823.

Article  PubMed  PubMed Central  Google Scholar 

Ji H, Lu P, Liu QuX, Wang Y, Jiang Z, Yang X, Zhong Y, Yang H, Pan H, Zhao L, Xu J, Lu H, Zhu H. Zinc-finger nucleases induced by HIV-1 Tat excise HIV-1 from the host genome in infected and latently infected cells. Mol Ther Nucleic Acids. 2018;12:67–74. https://doi.org/10.1016/j.omtn.2018.04.014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji P, Gong Y, Jin M, Wu H, Guo L-W, Pei Y-C, Chai W-J, Jiang Y-Z, Liu Y, Ma X-Y, Di G-H, Hu X, Shao Z-M. In vivo multidimensional CRISPR screens identify Lgals2 as an immunotherapy target in triple-negative breast cancer. 2022. https://doi.org/10.1126/sciadv.abl8247.

Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. 2022. https://doi.org/10.1038/s41568-022-00441-w.

Levy SE, Myers RM. Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet. 2016;17:95–115. https://doi.org/10.1146/annurev-genom-083115-022413.

Article  CAS  PubMed  Google Scholar 

Li C, Chu W, Gill RA, Sang S, Shi Y, Hu X, Yang Y, Zaman QU, Zhang B. Computational tools and resources for CRISPR/Cas genome editing. Genom Proteom Bioinform. 2023;21:108–26. https://doi.org/10.1016/j.gpb.2022.02.006.

Article  Google Scholar 

Lino CA, Harper JC, Carney JP, Timlin JA. Delivering crispr: A review of the challenges and approaches. Drug Deliv. 2018;25:1234–57. https://doi.org/10.1080/10717544.2018.1474964.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lorenzo D, Esquerda M, Palau F, Cambra FJ, enBioética GI. Ethics and genomic editing using the crispr-cas9 technique: Challenges and conflicts. NanoEthics. 2022;16:313–21. https://doi.org/10.1007/s11569-022-00425-y.

Article  Google Scholar 

Łukasiewicz S, Czeczelewski M, Forma A Forma, Baj J, Sitarz R, Stanislawek A. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies— an updated review. Cancers MDP. 2021;1–30. https://doi.org/10.3390/cancers13174287

Narimani M, Sharif M, Jalili A. Knockout of BIRC5 gene by CRISPR/Cas9 induces apoptosis and inhibits cell proliferation. Blood Lymphat Cancer. 2019;9:53–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Network TCGA. Comprehensive molecular portraits of human breast tumors The Cancer Genome Atlas Network. Nature. 2012;490:61–70. https://doi.org/10.1038/nature11412.Comprehensive.

Article  Google Scholar 

Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, Davies SR, Snider J, Stijleman IJ, Reed J, Cheang MCU, Mardis E, Perou CM, Bernard PS, Ellis MJ. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010;16:5222–32. https://doi.org/10.1158/1078-0432.CCR-10-1282.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norris AD, Gracida X, Calarco JA. CRISPR- mediated genetic interaction profiling identifies RNA binding proteins controlling metazoan fitness. Elife. 2017;6:1–18. https://doi.org/10.7554/eLife.28129.

Article  Google Scholar 

Ochiai H, Yamamoto T. Construction and evaluation of Zinc Finger Nucleases. In: Methods of molecular biology “Genome Editing in animals.” 2018. pp. 1–24. https://doi.org/10.1007/978-1-4939-7128-2_1.

Pont M, Marqués M, Sorolla MA, Parisi E, Urdanibia I, Morales S, Salud A, Sorolla A. Applications of CRISPR technology to breast cancer and triple negative breast cancer research. 2023. https://doi.org/10.3390/cancers15174364.

Sporikova Z, Koudelakova V, Trojanec R, Hajduch M. Genetic markers in triple-negative breast cancer. Clin Breast Cancer. 2018;18:e841–50. https://doi.org/10.1016/j.clbc.2018.07.023.

Article  CAS  PubMed  Google Scholar 

Topallian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell Elsevier Inc. 2017;176:139–48. https://doi.org/10.1016/j.ccell.2015.03.001.

Article  CAS  Google Scholar 

Sweatt SK, Gower BA, Chieh AY, Liu Y, Li L. Origins of programmable nucleases for genome engineering Srinivasan. J Mol Biol. 2016;176:139–48. https://doi.org/10.1016/j.jmb.2015.10.014.Origins.

Article 

Comments (0)

No login
gif