Baba T, Toth DJ, Sengupta N, Kim YJ, Balla T. Phosphatidylinositol 4,5‐bisphosphate controls Rab7 and <scp>PLEKHM</scp> 1 membrane cycling during autophagosome–lysosome fusion. EMBO J. 2019. https://doi.org/10.15252/embj.2019102837.
Article PubMed PubMed Central Google Scholar
Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J Pathol. 2010;221:117–24. https://doi.org/10.1002/path.2694.
Article PubMed PubMed Central CAS Google Scholar
Bas L, Papinski D, Licheva M, Torggler R, Rohringer S, Schuschnig M, et al. Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome–vacuole fusion. J Cell Biol. 2018;217:3656–69. https://doi.org/10.1083/jcb.201804028.
Article PubMed PubMed Central CAS Google Scholar
Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC. The polerovirus silencing suppressor P0 Targets ARGONAUTE proteins for degradation. Curr Biol. 2007;17:1609–14. https://doi.org/10.1016/j.cub.2007.08.039.
Article PubMed CAS Google Scholar
Bhar A, Gupta S, Chatterjee M, Das S. Redox regulatory networks in response to biotic stress in plants: a new insight through chickpea‐fusarium interplay. In: Pandey GK, editor. Mechanism of Plant Hormone Signaling under Stress. Wiley; 2017. p. 23–43. https://doi.org/10.1002/9781118889022.ch20.
Bhar A, Gupta S, Chatterjee M, Sen S, Das S. Differential expressions of photosynthetic genes provide clues to the resistance mechanism during Fusarium oxysporum f.sp. ciceri race 1 (Foc1) infection in chickpea (Cicer arietinum L.). Eur J Plant Pathol. 2016;148:533–49. https://doi.org/10.1007/s10658-016-1109-1.
Bozhkov PV. Plant autophagy: mechanisms and functions. J Exp Bot. 2018;69:1281–5. https://doi.org/10.1093/jxb/ery070.
Article PubMed PubMed Central CAS Google Scholar
Chen L, Zhang X, Wang W, Geng X, Shi Y, Na R, et al. Network and role analysis of autophagy in Phytophthora sojae. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-01988-7.
Article PubMed PubMed Central Google Scholar
Chen M, Liu L, Chen Y, Wu H, Yu S. Expression of α-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J. 1994;6:625–36. https://doi.org/10.1046/j.1365-313X.1994.6050625.x.
Article PubMed CAS Google Scholar
Chen Q, Wu Y, Yu F, Xie Q. Coordinative regulation of ERAD and selective autophagy in plants. Theodoulou F, Orosa B, Trujilo M, Rubio V, editors. Essays Biochem. 2022;66:179–88. https://doi.org/10.1042/EBC20210099.
Article PubMed CAS Google Scholar
Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL. The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Amp Differ. 2014;21:1399–408. https://doi.org/10.1038/cdd.2014.50.
Contento AL, Kim SJ, Bassham DC. Transcriptome profiling of the response of arabidopsis suspension culture cells to suc starvation. Plant Physiol. 2004;135:2330–47. https://doi.org/10.1104/pp.104.044362.
Article PubMed PubMed Central CAS Google Scholar
Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. Elife. 2016. https://doi.org/10.7554/eLife.10856.
Article PubMed PubMed Central Google Scholar
Dai A, Yu L, Wang HW. WHAMM initiates autolysosome tubulation by promoting actin polymerization on autolysosomes. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-11694-9.
Article PubMed PubMed Central Google Scholar
Deffieu M, Bhatia-Kiššová I, Salin B, Klionsky DJ, Pinson B, Manon S, et al. Increased levels of reduced cytochrome b and mitophagy components are required to trigger nonspecific autophagy following induced mitochondrial dysfunction. J Cell Sci. 2013;126:415–26. https://doi.org/10.1242/jcs.103713.
Article PubMed PubMed Central CAS Google Scholar
Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci. 2001;98:13454–9. https://doi.org/10.1073/pnas.231178298.
Article PubMed PubMed Central CAS Google Scholar
Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J, Ziegler-Graff V, et al. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc Natl Acad Sci. 2012;109:15942–6. https://doi.org/10.1073/pnas.1209487109.
Article PubMed PubMed Central CAS Google Scholar
Deter RL, de Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol. 1967;33:437–49. https://doi.org/10.1083/jcb.33.2.437.
Article PubMed PubMed Central CAS Google Scholar
Di Bartolomeo S, Nazio F, Cecconi F. The role of autophagy during development in higher eukaryotes. Traffic. 2010;11:1280–9. https://doi.org/10.1111/j.1600-0854.2010.01103.x.
Article PubMed CAS Google Scholar
Dilcher M, Köhler B, von Mollard GF. Genetic interactions with the yeast Q-SNARE vti1reveal novel functions for the R-SNARE YKT6. J Biol Chem. 2001;276:34537–44. https://doi.org/10.1074/jbc.M101551200.
Article PubMed CAS Google Scholar
Ding X, Zhang X, Otegui MS. Plant autophagy: new flavors on the menu. Curr Opin Plant Biol. 2018;46:113–21. https://doi.org/10.1016/j.pbi.2018.09.004.
Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in arabidopsis thaliana. J Biol Chem. 2002;277:33105–14. https://doi.org/10.1074/jbc.M204630200.
Article PubMed CAS Google Scholar
Du W, Su QP, Chen Y, Zhu Y, Jiang D, Rong Y, et al. Kinesin 1 drives autolysosome tubulation. Dev Cell. 2016;37:326–36. https://doi.org/10.1016/j.devcel.2016.04.014.
Article PubMed CAS Google Scholar
Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci. 1998;95:15781–6. https://doi.org/10.1073/pnas.95.26.15781.
Article PubMed PubMed Central CAS Google Scholar
Fortunato F, Bürgers H, Bergmann F, Rieger P, Büchler MW, Kroemer G, et al. Impaired autolysosome formation correlates with lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology. 2009;137:350-360.e5. https://doi.org/10.1053/j.gastro.2009.04.003.
Fukunaga R, Doudna JA. dsRNA with 5’ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J. 2009;28:545–55. https://doi.org/10.1038/emboj.2009.2.
Article PubMed PubMed Central CAS Google Scholar
Gammoh N, Florey O, Overholtzer M, Jiang X. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex–dependent and –independent autophagy. Nat Struct Amp Mol Biol. 2012;20:144–9. https://doi.org/10.1038/nsmb.2475.
Comments (0)