Chang AS, Dale AN, Moley KH. Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology. 2005;146:2445–53.
Article CAS PubMed Google Scholar
Colton SA, Pieper GM, Downs SM. Altered meiotic regulation in oocytes from diabetic mice. Biol Reprod. 2002;67:220–31.
Article CAS PubMed Google Scholar
Liu X, Zhang L, Wang P, Li X, Qiu D, Li L, et al. Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice. Cell Cycle. 2017;16:1302–8.
Article CAS PubMed PubMed Central Google Scholar
Xin Y, Jin Y, Ge J, Huang Z, Han L, Li C, et al. Involvement of SIRT3-GSK3beta deacetylation pathway in the effects of maternal diabetes on oocyte meiosis. Cell Prolif. 2021;54:e12940.
Article CAS PubMed Google Scholar
Lu J, Zhao SX, Zhang MY, Ji PY, Chao S, Li LJ, et al. Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality. Food Funct. 2022;13:5396–405.
Article CAS PubMed Google Scholar
Wang Q, Frolova AI, Purcell S, Adastra K, Schoeller E, Chi MM, et al. Mitochondrial dysfunction and apoptosis in cumulus cells of type I diabetic mice. PLoS One. 2010;5:e15901.
Article CAS PubMed PubMed Central Google Scholar
Gilchrist RB, Thompson JG. Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology. 2007;67:6–15.
Das M, Son WY. In vitro maturation (IVM) of human immature oocytes: is it still relevant? Reprod Biol Endocrinol. 2023;21:110.
Article CAS PubMed PubMed Central Google Scholar
Gilchrist RB, Smitz J. Oocyte in vitro maturation: physiological basis and application to clinical practice. Fertil Steril. 2023;119:524–39.
Wang Q, Tang SB, Song XB, Deng TF, Zhang TT, Yin S, et al. High-glucose concentrations change DNA methylation levels in human IVM oocytes. Hum Reprod. 2018;33:474–81.
Article CAS PubMed Google Scholar
Sankari S, Elanchezhian M, Selvamani D, Nagarajan M, Gopikrishnan D. Live Birth after Rescue In vitro Maturation-intracytoplasmic Sperm Injection in Type 1 Diabetes, Polycystic Ovary Syndrome Patient Using Clomiphene-antagonist Protocol. J Hum Reprod Sci. 2018;11:75–78.
Article PubMed PubMed Central Google Scholar
Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves PB, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 2001;64:904–9.
Article CAS PubMed Google Scholar
Mtango NR, Harvey AJ, Latham KE, Brenner CA. Molecular control of mitochondrial function in developing rhesus monkey oocytes and preimplantation-stage embryos. Reprod Fertil Dev. 2008;20:846–59.
Article CAS PubMed Google Scholar
Guo Z, Yang J, Yang G, Feng T, Zhang X, Chen Y, et al. Effects of nicotinamide on follicular development and the quality of oocytes. Reprod Biol Endocrinol. 2022;20:70.
Article CAS PubMed PubMed Central Google Scholar
Li XQ, Wang Y, Yang SJ, Liu Y, Ma X, Liu L, et al. Melatonin protects against maternal diabetes-associated meiotic defects by maintaining mitochondrial function. Free Radic Biol Med. 2022;188:386–94.
Article CAS PubMed Google Scholar
Yoshino J, Baur JA, Imai SI. NAD(+) Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2018;27:513–28.
Article CAS PubMed Google Scholar
Hong W, Mo F, Zhang Z, Huang M, Wei X. Nicotinamide Mononucleotide: A Promising Molecule for Therapy of Diverse Diseases by Targeting NAD+ Metabolism. Front Cell Dev Biol. 2020;8:246.
Article PubMed PubMed Central Google Scholar
Yano M, Akazawa H, Oka T, Yabumoto C, Kudo-Sakamoto Y, Kamo T, et al. Monocyte-derived extracellular Nampt-dependent biosynthesis of NAD(+) protects the heart against pressure overload. Sci Rep. 2015;5:15857.
Article CAS PubMed PubMed Central Google Scholar
Wei CC, Kong YY, Li GQ, Guan YF, Wang P, Miao CY. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci Rep. 2017;7:717.
Article PubMed PubMed Central Google Scholar
Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14:528–36.
Article CAS PubMed PubMed Central Google Scholar
Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS, Schuh RA. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 2015;15:19.
Article PubMed PubMed Central Google Scholar
Jiang Y, Wang D, Zhang C, Jiao Y, Pu Y, Cheng R, et al. Nicotinamide mononucleotide restores oxidative stress-related apoptosis of oocyte exposed to benzyl butyl phthalate in mice. Cell Prolif. 2023;56:e13419.
Article CAS PubMed PubMed Central Google Scholar
Miao Y, Li X, Shi X, Gao Q, Chen J, Wang R, et al. Nicotinamide Mononucleotide Restores the Meiotic Competency of Porcine Oocytes Exposed to Ethylene Glycol Butyl Ether. Front Cell Dev Biol. 2021;9:628580.
Article PubMed PubMed Central Google Scholar
Song M, Li Y, Zhou Y, Yan J, Zhou X, Gao Q, et al. Nicotinamide mononucleotide supplementation improves the quality of porcine oocytes under heat stress. J Anim Sci Biotechnol. 2022;13:68.
Article CAS PubMed PubMed Central Google Scholar
Xu X, Yang B, Zhang H, Feng X, Hao H, Du W, et al. Effects of beta-Nicotinamide Mononucleotide, Berberine, and Cordycepin on Lipid Droplet Content and Developmental Ability of Vitrified Bovine Oocytes. Antioxid. 2023;12:991.
Bertoldo MJ, Listijono DR, Ho WJ, Riepsamen AH, Goss DM, Richani D, et al. NAD(+) Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep. 2020;30:1670–81.e1677.
Article CAS PubMed PubMed Central Google Scholar
Miao Y, Cui Z, Gao Q, Rui R, Xiong B. Nicotinamide Mononucleotide Supplementation Reverses the Declining Quality of Maternally Aged Oocytes. Cell Rep. 2020;32:107987.
Article CAS PubMed Google Scholar
Wang L, Chen Y, Wei J, Guo F, Li L, Han Z, et al. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif. 2022;55:e13303.
Article CAS PubMed PubMed Central Google Scholar
Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA. 2003;100:10794–9.
Article CAS PubMed PubMed Central Google Scholar
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004;16:93–105.
Article CAS PubMed Google Scholar
Zhou Q, Meng QR, Meng TG, He QL, Zhao ZH, Li QN, et al. Deletion of BAF250a affects oocyte epigenetic modifications and embryonic development. Mol Reprod Dev. 2020;87:550–64.
Article CAS PubMed Google Scholar
Rosenn B, Miodovnik M, Combs CA, Khoury J, Siddiqi TA. Glycemic thresholds for spontaneous abortion and congenital malformations in insulin-dependent diabetes mellitus. Obstet Gynecol. 1994;84:515–20.
Wyman A, Pinto AB, Sheridan R, Moley KH. One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology. 2008;149:466–9.
Article CAS PubMed Google Scholar
Wan Y, Muhammad T, Huang T, Lv Y, Sha Q, Yang S, et al. IGF2 reduces meiotic defects in oocytes from obese mice and improves embryonic developmental competency. Reprod Biol Endocrinol. 2022;20:101.
Article CAS PubMed PubMed Central Google Scholar
Luo Y, Zhuan Q, Li J, Du X, Huang Z, Hou Y, et al. Procyanidin B2 Improves Oocyte Maturation and Subsequent Development in Type 1 Diabetic Mice by Promoting Mitochondrial Function. Reprod Sci. 2020;27:2211–22.
Comments (0)