Endocrine disrupting chemicals: gestational diabetes and beyond

Sacks DA, Hadden DR, Maresh M, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: the hyperglycemia and adverse pregnancy outcome (HAPO) study. Diabetes Care. 2012;35(3):526–8. https://doi.org/10.2337/dc11-1641.

Article  PubMed  PubMed Central  Google Scholar 

Wang H, Li N, Chivese T, et al. IDF Diabetes Atlas: estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res Clin Pract. 2022;183:109050. https://doi.org/10.1016/j.diabres.2021.109050.

Article  PubMed  Google Scholar 

Farahvar S, Walfisch A, Sheiner E. Gestational diabetes risk factors and long-term consequences for both mother and offspring: a literature review. Expert Rev Endocrinol Metab. 2019;14(1):63–74. https://doi.org/10.1080/17446651.2018.1476135.

Article  CAS  PubMed  Google Scholar 

Hasbullah FY, Mohd Yusof BN, Shariff ZM, Rejali Z, Yong HY, Mitri J. Factors associated with dietary glycemic index and glycemic load in pregnant women and risk for gestational diabetes mellitus. Int J Food Sci Nutr. 2020;71(4):516–24. https://doi.org/10.1080/09637486.2019.1686752.

Article  CAS  PubMed  Google Scholar 

Bellavia A, Mínguez-Alarcón L, Ford JB, et al. Association of self-reported personal care product use with blood glucose levels measured during pregnancy among women from a fertility clinic. Sci Total Environ. 2019;695:133855. https://doi.org/10.1016/j.scitotenv.2019.133855.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kassotis CD, Vandenberg LN, Demeneix BA, Porta M, Slama R, Trasande L. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 2020;8(8):719–30. https://doi.org/10.1016/S2213-8587(20)30128-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kahn LG, Philippat C, Nakayama SF, Slama R, Trasande L. Endocrine-disrupting chemicals: implications for human health. Lancet Diabetes Endocrinol. 2020;8(8):703–18. https://doi.org/10.1016/S2213-8587(20)30129-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gingrich J, Ticiani E, Veiga-Lopez A. Placenta disrupted: endocrine disrupting chemicals and pregnancy. Trends Endocrinol Metab. 2020;31(7):508–24. https://doi.org/10.1016/j.tem.2020.03.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol. 2017;13(3):161–73. https://doi.org/10.1038/nrendo.2016.186.

Article  CAS  PubMed  Google Scholar 

Miller RG, Costacou T, Orchard TJ. Risk factor modeling for Cardiovascular Disease in Type 1 diabetes in the Pittsburgh Epidemiology of Diabetes Complications (EDC) study: a comparison with the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and complications Study (DCCT/EDIC). Diabetes. 2019;68(2):409–19. https://doi.org/10.2337/db18-0515.

Article  CAS  PubMed  Google Scholar 

Chen Y, Xiao H, Namat A, et al. Association between trimester-specific exposure to thirteen endocrine disrupting chemicals and preterm birth: comparison of three statistical models. Sci Total Environ. 2022;851(Pt 2):158236. https://doi.org/10.1016/j.scitotenv.2022.158236.

Article  CAS  PubMed  Google Scholar 

Kunysz M, Mora-Janiszewska O, Darmochwał-Kolarz D. Epigenetic Modifications Associated with exposure to endocrine disrupting chemicals in patients with gestational diabetes Mellitus. Int J Mol Sci. 2021;22(9). https://doi.org/10.3390/ijms22094693.

Birru RL, Liang HW, Farooq F, et al. A pathway level analysis of PFAS exposure and risk of gestational diabetes mellitus. Environ Health. 2021;20(1):63. https://doi.org/10.1186/s12940-021-00740-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gulati R, Nandi D, Sarkar K, et al. Exosomes as theranostic targets: implications for the clinical prognosis of aggressive cancers. Front Mol Biosci. 2022;9:890768. https://doi.org/10.3389/fmolb.2022.890768.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitra T, Gulati R, Uppal A, et al. Prospecting of exosomal-miRNA signatures as prognostic marker for gestational diabetes mellitus and other adverse pregnancy outcomes. Front Endocrinol (Lausanne). 2023;14:1097337. https://doi.org/10.3389/fendo.2023.1097337.

Article  PubMed  Google Scholar 

Martin L, Zhang Y, First O, et al. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: a review and future steps. Environ Int. 2022;170:107576. https://doi.org/10.1016/j.envint.2022.107576.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menale C, Mita DG, Diano N, Diano S. Adverse effects of Bisphenol A exposure on glucose metabolism regulation. Open Biotechnol J. 2016;10(1):122–30. https://doi.org/10.2174/1874070701610010122.

Article  CAS  Google Scholar 

Stahlhut RW, Myers JP, Taylor JA, Nadal A, Dyer JA, Vom Saal FS. Experimental BPA exposure and glucose-stimulated insulin response in adult men and women. J Endocr Soc. 2018;2(10):1173–87. https://doi.org/10.1210/js.2018-00151.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rochester JR. Bisphenol A and human health: a review of the literature. Reprod Toxicol. 2013;42:132–55. https://doi.org/10.1016/j.reprotox.2013.08.008.

Article  CAS  PubMed  Google Scholar 

Braun JM, Muckle G, Arbuckle T, et al. Associations of prenatal urinary bisphenol A concentrations with child behaviors and cognitive abilities. Environ Health Perspect. 2017;125(6):067008. https://doi.org/10.1289/EHP984.

Article  PubMed  PubMed Central  Google Scholar 

Zhang W, Xia W, Liu W, et al. Exposure to Bisphenol a substitutes and Gestational Diabetes Mellitus: a prospective cohort study in China. Front Endocrinol (Lausanne). 2019;10:262. https://doi.org/10.3389/fendo.2019.00262.

Article  PubMed  Google Scholar 

Eberle C, Stichling S. Environmental health influences in pregnancy and risk of gestational diabetes mellitus: a systematic review. BMC Public Health. 2022;22(1):1572. https://doi.org/10.1186/s12889-022-13965-5.

Article  PubMed  PubMed Central  Google Scholar 

Chiu YH, Mínguez-Alarcón L, Ford JB, et al. Trimester-specific urinary bisphenol A concentrations and blood glucose levels among pregnant women from a fertility clinic. J Clin Endocrinol Metab. 2017;102(4):1350–7. https://doi.org/10.1210/jc.2017-00022.

Article  PubMed  PubMed Central  Google Scholar 

Bellavia A, Cantonwine DE, Meeker JD, et al. Pregnancy urinary bisphenol-A concentrations and glucose levels across BMI categories. Environ Int. 2018;113:35–41. https://doi.org/10.1016/j.envint.2018.01.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alonso-Magdalena P, Quesada I, Nadal Á. Prenatal exposure to BPA and offspring outcomes: the Diabesogenic Behavior of BPA. Dose Response. 2015;13(2):1559325815590395. https://doi.org/10.1177/1559325815590395.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jacovetti C, Abderrahmani A, Parnaud G, et al. MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest. 2012;122(10):3541–51. https://doi.org/10.1172/JCI64151.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei J, Ding D, Wang T, Liu Q, Lin Y. MiR-338 controls BPA-triggered pancreatic islet insulin secretory dysfunction from compensation to decompensation by targeting Pdx-1. FASEB J. 2017;31(12):5184–95. https://doi.org/10.1096/fj.201700282R.

Article  CAS  PubMed  Google Scholar 

Phrakonkham P, Viengchareun S, Belloir C, Lombès M, Artur Y, Canivenc-Lavier MC. Dietary xenoestrogens differentially impair 3T3-L1 preadipocyte differentiation and persistently affect leptin synthesis. J Steroid Biochem Mol Biol. 2008;110(1–2):95–103. https://doi.org/10.1016/j.jsbmb.2008.02.006.

Article  CAS  PubMed  Google Scholar 

Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci. 2005;84(2):319–27. https://doi.org/10.1093/toxsci/kfi088.

Article  CAS  PubMed  Google Scholar 

Ariemma F, D’Esposito V, Liguoro D, et al. Low-dose Bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS ONE. 2016;11(3):e0150762. https://doi.org/10.1371/journal.pone.0150762.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohlstein JF, Strong AL, McLachlan JA, Gimble JM, Burow ME, Bunnell BA. Bisphenol a enhances adipogenic differentiation of human adipose stromal/stem cells. J Mol Endocrinol. 2014;53(3):345–53. https://doi.org/10.1530/JME-14-0052.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angle BM, Do RP, Ponzi D, et al. Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod Toxicol. 2013;42:256–68. https://doi.org/10.1016/j.reprotox.2013.07.017.

Article 

Comments (0)

No login
gif