Albarakati N, Al-Ghamdi H, Al-Sowayan B, Alshareeda A (2023) Homologous recombination mRNAs (RAD21, RAD50 and BARD1) have a potentially poor prognostic role in ERBB2-low bladder cancer patients. Sci Rep 13:11738. https://doi.org/10.1038/s41598-023-38923-y
Article CAS PubMed PubMed Central Google Scholar
An L, Gong H, Yu X, Zhang W, Liu X, Yang X, Yang L (2023) Downregulation of MAL2 inhibits breast cancer progression through regulating beta-catenin/c-Myc axis. Cancer Cell Int 23:144. https://doi.org/10.1186/s12935-023-02993-9
Article CAS PubMed PubMed Central Google Scholar
Bhandari A, Shen Y, Sindan N, Xia E, Gautam B, Lv S, Zhang X (2018) MAL2 promotes proliferation, migration, and invasion through regulating epithelial-mesenchymal transition in breast cancer cell lines. Biochem Biophys Res Commun 504:434–439. https://doi.org/10.1016/j.bbrc.2018.08.187
Article CAS PubMed Google Scholar
Brooks RA, Fleming GF, Lastra RR, Lee NK, Moroney JW, Son CH, Veneris JL (2019) Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin 69:258–279. https://doi.org/10.3322/caac.21561
Bruno V, Corrado G, Baci D, Chiofalo B, Carosi MA, Ronchetti L, Vizza E (2020) Endometrial Cancer Immune escape mechanisms: let us learn from the fetal-maternal interface. Front Oncol 10:156. https://doi.org/10.3389/fonc.2020.00156
Article PubMed PubMed Central Google Scholar
Byrne JA, Maleki S, Hardy JR, Gloss BS, Murali R, Scurry JP, O’Brien PM (2010) MAL2 and tumor protein D52 (TPD52) are frequently overexpressed in ovarian carcinoma, but differentially associated with histological subtype and patient outcome. BMC Cancer 10:497. https://doi.org/10.1186/1471-2407-10-497
Article CAS PubMed PubMed Central Google Scholar
Cao W, Ma X, Fischer JV, Sun C, Kong B, Zhang Q (2021) Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomark Res 9:49. https://doi.org/10.1186/s40364-021-00301-z
Article PubMed PubMed Central Google Scholar
Cheng H, Zhang N, Pati D (2020) Cohesin subunit RAD21: from biology to disease. Gene 758:144966. https://doi.org/10.1016/j.gene.2020.144966
Article CAS PubMed PubMed Central Google Scholar
Deng P, Wang Z, Chen J, Liu S, Yao X, Liu S, Tan J (2022) RAD21 amplification epigenetically suppresses interferon signaling to promote immune evasion in ovarian cancer. J Clin Invest. https://doi.org/10.1172/JCI159628
Article PubMed PubMed Central Google Scholar
Dersh D, Yewdell JW (2021) Immune MAL2-practice: breast cancer immunoevasion via MHC class I degradation. J Clin Invest. https://doi.org/10.1172/JCI144344
Article PubMed PubMed Central Google Scholar
Dhatchinamoorthy K, Colbert JD, Rock KL (2021) Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol 12:636568. https://doi.org/10.3389/fimmu.2021.636568
Article CAS PubMed PubMed Central Google Scholar
Du L, Lee JH, Jiang H, Wang C, Wang S, Zheng Z, Lyu J (2020) Beta-catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med. https://doi.org/10.1084/jem.20191115
Article PubMed PubMed Central Google Scholar
Eguchi D, Ohuchida K, Kozono S, Ikenaga N, Shindo K, Cui L, Tanaka M (2013) MAL2 expression predicts distant metastasis and short survival in pancreatic cancer. Surgery 154:573–582. https://doi.org/10.1016/j.surg.2013.03.010
Fang Y, Wang L, Wan C, Sun Y, Van der Jeught K, Zhou Z, Zhang X (2021) MAL2 drives immune evasion in breast cancer by suppressing tumor antigen presentation. J Clin Invest. https://doi.org/10.1172/JCI140837
Article PubMed PubMed Central Google Scholar
Gou R, Li X, Dong H, Hu Y, Liu O, Liu J, Lin B (2022) RAD21 confers poor prognosis and affects ovarian Cancer sensitivity to poly(ADP-Ribose)polymerase inhibitors through DNA damage repair. Front Oncol 12:936550. https://doi.org/10.3389/fonc.2022.936550
Article CAS PubMed PubMed Central Google Scholar
Idaghdour Y, Quinlan J, Goulet JP, Berghout J, Gbeha E, Bruat V, Awadalla P (2012) Evidence for additive and interaction effects of host genotype and infection in malaria. Proc Natl Acad Sci U S A 109:16786–16793. https://doi.org/10.1073/pnas.1204945109
Article PubMed PubMed Central Google Scholar
Jhunjhunwala S, Hammer C, Delamarre L (2021) Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 21:298–312. https://doi.org/10.1038/s41568-021-00339-z
Article CAS PubMed Google Scholar
Labat-de-Hoz L, Rubio-Ramos A, Correas I, Alonso MA (2023) The MAL family of proteins: normal function, expression in cancer, and potential use as cancer biomarkers. Cancers (Basel). https://doi.org/10.3390/cancers15102801
Lee MY, Jeon JW, Sievers C, Allen CT (2020) Antigen processing and presentation in cancer immunotherapy. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-001111
Article PubMed PubMed Central Google Scholar
Lv J, Li K, Yu H, Han J, Zhuang J, Yu R, Lu Q (2023) HNRNPL induced circFAM13B increased bladder cancer immunotherapy sensitivity via inhibiting glycolysis through IGF2BP1/PKM2 pathway. J Exp Clin Cancer Res 42:41. https://doi.org/10.1186/s13046-023-02614-3
Article CAS PubMed PubMed Central Google Scholar
Mahmood SF, Gruel N, Chapeaublanc E, Lescure A, Jones T, Reyal F, Bernard-Pierrot I (2014) A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis 35:670–682. https://doi.org/10.1093/carcin/bgt351
Article CAS PubMed Google Scholar
Martinez-Lostao L, Anel A, Pardo J (2015) How do cytotoxic lymphocytes kill Cancer cells? Clin Cancer Res 21:5047–5056. https://doi.org/10.1158/1078-0432.CCR-15-0685
Article CAS PubMed Google Scholar
Obermayr E, Sanchez-Cabo F, Tea MK, Singer CF, Krainer M, Fischer MB, Zeillinger R (2010) Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients. BMC Cancer 10:666. https://doi.org/10.1186/1471-2407-10-666
Article CAS PubMed PubMed Central Google Scholar
Oreskovic E, Wheeler EC, Mengwasser KE, Fujimura E, Martin TD, Tothova Z, Elledge SJ (2022) Genetic analysis of cancer drivers reveals cohesin and CTCF as suppressors of PD-L1. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2120540119
Article PubMed PubMed Central Google Scholar
Rizzo S, Femia M, Buscarino V, Franchi D, Garbi A, Zanagnolo V, Bellomi M (2018) Endometrial cancer: an overview of novelties in treatment and related imaging keypoints for local staging. Cancer Imaging 18:45. https://doi.org/10.1186/s40644-018-0180-6
Article PubMed PubMed Central Google Scholar
St Paul M, Ohashi PS (2020) The roles of CD8(+) T cell subsets in Antitumor Immunity. Trends Cell Biol 30:695–704. https://doi.org/10.1016/j.tcb.2020.06.003
Article CAS PubMed Google Scholar
Supernat A, Lapinska-Szumczyk S, Majewska H, Gulczynski J, Biernat W, Wydra D, Zaczek AJ (2014) Tumor heterogeneity at protein level as an independent prognostic factor in endometrial cancer. Transl Oncol 7:613–619. https://doi.org/10.1016/j.tranon.2014.06.001
Article PubMed PubMed Central Google Scholar
Xia L, Wang M, Li H, Tang X, Chen F, Cui J (2018) The effect of aberrant expression and genetic polymorphisms of Rad21 on cervical cancer biology. Cancer Med 7:3393–3405. https://doi.org/10.1002/cam4.1592
Article CAS PubMed PubMed Central Google Scholar
Zhan L, Zhang J, Wei B, Cao Y (2022) Selective autophagy of NLRC5 promotes immune evasion of endometrial cancer. Autophagy 18:942–943. https://doi.org/10.1080/15548627.2022.2037119
Article CAS PubMed PubMed Central Google Scholar
Zhang B, Xiao J, Cheng X, Liu T (2021) MAL2 interacts with IQGAP1 to promote pancreatic cancer progression by increasing ERK1/2 phosphorylation. Biochem Biophys Res Commun 554:63–70. https://doi.org/10.1016/j.bbrc.2021.02.146
Article CAS PubMed Google Scholar
Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Li MQ (2021) CD45RO(-)CD8(+) T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERbeta/miR-765/PLP2/Notch axis. Theranostics 11:5330–5345. https://doi.org/10.7150/thno.58337
Comments (0)