Characterization and Applications of Permeabilized Hepatocytes in Drug Discovery

Smith DA, Beaumont K, Maurer TS, Di L. Clearance in drug design. J Med Chem. 2019;62(5):2245–55. https://doi.org/10.1021/acs.jmedchem.8b01263.

Article  CAS  PubMed  Google Scholar 

Tess D, Chang GC, Keefer C, Carlo A, Jones R, Di L. In vitro-in vivo extrapolation and scaling factors for clearance of human and preclinical species with liver microsomes and hepatocytes the aaps journal. 2023;25(3):40. https://link.springer.com/article/10.1208/s12248-023-00800-x.

Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacom Syst Pharmacol. 2013;2(8):63. https://doi.org/10.1038/psp.2013.41.

Article  CAS  Google Scholar 

Keefer C, Chang G, Carlo A, Novak JJ, Banker M, Carey J, et al. Mechanistic insights on clearance and inhibition discordance between liver microsomes and hepatocytes when clearance in liver microsomes is higher than in hepatocytes. Eur J Pharm Sci. 2020;155:105541. https://doi.org/10.1016/j.ejps.2020.105541.

Article  CAS  PubMed  Google Scholar 

Ma B, Wong S, Liu J, Cai J, Khojasteh SC, Zhang D, editors. Biotransformation of protein degraders bavdegalutamide and XL01126 in permeabilized cryopreserved human hepatocytes. ISSX Poster; 2023; Boston.

Li AP, Ho M-CD, Amaral K, Loretz C. A novel in vitro experimental system for the evaluation of drug metabolism: cofactor-supplemented permeabilized cryopreserved human hepatocytes (MetMax cryopreserved human hepatocytes). Drug Metab Dispos. 2018;46(11):1608-16. https://doi.org/10.1124/dmd.117.079657.

Wood FL, Houston JB, Hallifax D. Importance of the unstirred water layer and hepatocyte membrane integrity in vitro for quantification of intrinsic metabolic clearance. Drug Metabol Dispos. 2018;46(3):268–78. https://doi.org/10.1124/dmd.117.078949.

Article  Google Scholar 

Schulz I. Permeabilizing cells: Some methods and applications for the study of intracellular processes. Methods in Enzymology: Academic Press; 1990. p. 280-300.

Lapham K, Lin J, Novak J, Orozco C, Niosi M, Di L, et al. 6-Chloro-5-[4-(1-Hydroxycyclobutyl)Phenyl]-1H-Indole-3-Carboxylic Acid is a Highly Selective Substrate for Glucuronidation by UGT1A1 Relative to β-Estradiol. Drug Metab Dispos. 2018;46(12):1836–46. https://doi.org/10.1124/dmd.118.083709.

Article  CAS  PubMed  Google Scholar 

Di L, Atkinson K, Orozco CC, Funk C, Zhang H, McDonald TS, et al. In vitro-in vivo correlation for low-clearance compounds using hepatocyte relay method. Drug Metab Dispos. 2013;41(12):2018–23. https://doi.org/10.1124/dmd.113.053322.

Article  CAS  PubMed  Google Scholar 

Di L, Trapa P, Obach RS, Atkinson K, Bi Y-A, Wolford AC, et al. A novel relay method for determining low-clearance values. Drug Metab Dispos. 2012;40(9):1860–5. https://doi.org/10.1124/dmd.112.046425.

Article  CAS  PubMed  Google Scholar 

Tess DA, Ryu S, Di L. In vitro - in vivo extrapolation of hepatic clearance in preclinical species. Pharm Res. 2022;39(7):1615–32. https://doi.org/10.1007/s11095-022-03205-1.

Article  CAS  PubMed  Google Scholar 

Di L, Whitney-Pickett C, Umland JP, Zhang H, Zhang X, Gebhard DF, et al. Development of a new permeability assay using low-efflux MDCKII cells. J Pharm Sci. 2011;100(11):4974–85.

Article  CAS  PubMed  Google Scholar 

Di L, Keefer C, Scott DO, Strelevitz TJ, Chang G, Bi Y-A, et al. Mechanistic insights from comparing intrinsic clearance values between human liver microsomes and hepatocytes to guide drug design. Eur J Med Chem. 2012;57:441–8. https://doi.org/10.1016/j.ejmech.2012.06.043.

Article  CAS  PubMed  Google Scholar 

Wood FL, Houston JB, Hallifax D. Clearance prediction methodology needs fundamental improvement: Trends common to rat and human hepatocytes/microsomes and implications for experimental methodology. Drug Metab Dispos. 2017;45(11):1178–88.

Article  CAS  PubMed  Google Scholar 

Chen H, McFaul C, Titushkin I, Cho M, Lee R. Surfactant copolymer annealing of chemically permeabilized cell membranes. Regenerat Eng Trans Med. 2018;4(1):1–10. https://doi.org/10.1007/s40883-017-0044-9.

Article  CAS  Google Scholar 

Ichida H, Fukami T, Amai K, Suzuki K, Mishiro K, Takano S, et al. Quantitative evaluation of the contribution of each Aldo-Keto reductase and short-chain dehydrogenase/reductase isoform to reduction reactions of compounds containing a ketone group in the human liver. Drug Metab Dispos. 2023;51(1):17–28. https://doi.org/10.1124/dmd.122.001037.

Article  CAS  PubMed  Google Scholar 

Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther. 2019;201:137–80. https://doi.org/10.1016/j.pharmthera.2019.05.011.

Article  CAS  PubMed  Google Scholar 

Yang X, Atkinson K, Di L. Novel cytochrome p450 reaction phenotyping for low-clearance compounds using the hepatocyte relay method. Drug Metab Dispos. 2016;44(3):460–5.

Article  PubMed  Google Scholar 

Di L. Recent advances in measurement of metabolic clearance, metabolite profile and reaction phenotyping of low clearance compounds. Expert Opin Drug Discov. 2023;18(11):1209–19. https://doi.org/10.1080/17460441.2023.2238606.

Article  CAS  PubMed  Google Scholar 

Bapiro TE, Martin S, Wilkinson SD, Orton AL, Hariparsad N, Harlfinger S, et al. The disconnect in intrinsic clearance determined in human hepatocytes and liver microsomes results from divergent cytochrome p450 activities. Drug Metab Dispos. 2023;51(7):892–901. https://doi.org/10.1124/dmd.123.001323.

Article  CAS  PubMed  Google Scholar 

Dalvie D, Di L, Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther. 2019;201:137-180. https://www.sciencedirect.com/science/article/abs/pii/S0163725819300932?via%3Dihub.

Comments (0)

No login
gif