Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.
Article CAS PubMed Google Scholar
Takahashi K, Hattori N, Yokoyama H, Jinno F, Ohtsuka H, Nakai K, et al. Impact of microsampling on toxicological evaluation in rodent safety studies. J Appl Toxicol. 2024;44(1):118–28. https://doi.org/10.1002/jat.4523.
Article CAS PubMed Google Scholar
Stove CP, Ingels AS, De Kesel PM, Lambert WE. Dried blood spots in toxicology: from the cradle to the grave? Crit Rev Toxicol. 2012;42(3):230–43. https://doi.org/10.3109/10408444.2011.650790.
Article CAS PubMed Google Scholar
Sadones N, Capiau S, De Kesel PM, Lambert WE, Stove CP. Spot them in the spot: analysis of abused substances using dried blood spots. Bioanalysis. 2014;6(17):2211–27. https://doi.org/10.4155/bio.14.156.
Article CAS PubMed Google Scholar
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing 2020/2021. Drug Test Anal. 2022;14(1):7–30. https://doi.org/10.1002/dta.3199.
Article CAS PubMed Google Scholar
Tey HY, See HH. A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. J Chromatogr A. 2021;1635:461731. https://doi.org/10.1016/j.chroma.2020.461731.
Article CAS PubMed Google Scholar
Müller IR, Linden G, Charão MF, Antunes MV, Linden R. Dried blood spot sampling for therapeutic drug monitoring: challenges and opportunities. Expert Rev Clin Pharmacol. 2023;16(8):691–701. https://doi.org/10.1080/17512433.2023.2224562.
Article CAS PubMed Google Scholar
Vidal A, Belova L, Stove C, De Boevre M, De Saeger S. Volumetric absorptive microsampling as an alternative tool for biomonitoring of multi-mycotoxin exposure in resource-limited areas. Toxins (Basel). 2021;13(5). https://doi.org/10.3390/toxins13050345.
Koutsimpani-Wagner A, Quartucci C, Rooney JPK, Bose-O’Reilly S, Rakete S. Mercury biomonitoring in German adults using volumetric absorptive microsampling. Environ Monit Assess. 2022;194(4):315. https://doi.org/10.1007/s10661-022-09962-1.
Article CAS PubMed PubMed Central Google Scholar
González-Rubio JM, Domínguez-Morueco N, Pedraza-Díaz S, Cañas Portilla A, Lucena M, Rodriguez A, et al. A simple method for direct mercury analysis in dried blood spots (DBS) samples for human biomonitoring studies. Environ Int. 2023;177:107958. https://doi.org/10.1016/j.envint.2023.107958.
Article CAS PubMed Google Scholar
Partington JM, Marchiandi J, Szabo D, Gooley A, Kouremenos K, Smith F, et al. Validating blood microsampling for per- and polyfluoroalkyl substances quantification in whole blood. J Chromatogr A. 2024;1713:464522. https://doi.org/10.1016/j.chroma.2023.464522.
Article CAS PubMed Google Scholar
De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis. 2013;5(16):2023–41. https://doi.org/10.4155/bio.13.156.
Article CAS PubMed Google Scholar
Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal. 2019;163:188–96. https://doi.org/10.1016/j.jpba.2018.10.010.
Article CAS PubMed Google Scholar
Delahaye L, Veenhof H, Koch BCP, Alffenaar JC, Linden R, Stove C. Alternative sampling devices to collect dried blood microsamples: state-of-the-art. Ther Drug Monit. 2021;43(3):310–21. https://doi.org/10.1097/ftd.0000000000000864.
Thangavelu MU, Wouters B, Kindt A, Reiss IKM, Hankemeier T. Blood microsampling technologies: innovations and applications in 2022. Anal Sci Adv. 2023;4(5–6):154–80. https://doi.org/10.1002/ansa.202300011.
Article CAS PubMed PubMed Central Google Scholar
Zuur MA, Veenhof H, Aleksa A, Vanʼt Boveneind-Vrubleuskaya N, Darmawan E, Hasnain MG, et al. Quality assessment of dried blood spots from patients with tuberculosis from 4 countries. Ther Drug Monit. 2019;41(6):714–8. https://doi.org/10.1097/ftd.0000000000000659.
Veenhof H, Koster RA, Junier LAT, Berger SP, Bakker SJL, Touw DJ. Volumetric absorptive microsampling and dried blood spot microsampling vs. conventional venous sampling for tacrolimus trough concentration monitoring. Clin Chem Lab Med. 2020;58(10):1687–95. https://doi.org/10.1515/cclm-2019-1260.
Article CAS PubMed Google Scholar
Delahaye L, Stove C. Alternative sampling strategies in therapeutic drug monitoring: Microsampling growing toward maturity. Ther Drug Monit. 2021;43(3):307–9. https://doi.org/10.1097/ftd.0000000000000893.
Van Uytfanghe K, Heughebaert L, Stove CP. Self-sampling at home using volumetric absorptive microsampling: coupling analytical evaluation to volunteers’ perception in the context of a large scale study. Clin Chem Lab Med. 2021;59(5):e185–7. https://doi.org/10.1515/cclm-2020-1180.
Article CAS PubMed Google Scholar
Boons C, Timmers L, Janssen J, Swart EL, Hugtenburg JG, Hendrikse NH. Feasibility of and patients’ perspective on nilotinib dried blood spot self-sampling. Eur J Clin Pharmacol. 2019;75(6):825–9. https://doi.org/10.1007/s00228-019-02640-1.
Article CAS PubMed Google Scholar
Otten AT, van der Meulen HH, Steenhuis M, Loeff FC, Touw DJ, Kosterink JGW, et al. Clinical validation of a capillary blood home-based self-sampling technique for monitoring of Infliximab, Vedolizumab, and C-reactive protein concentrations in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2023. https://doi.org/10.1093/ibd/izad103.
Article PubMed PubMed Central Google Scholar
Mohammed T, Brewer JVV, Pyatt M, Whitbourne SB, Gaziano JM, Edson C, et al. Evaluation of independent self-collected blood specimens for COVID-19 antibody detection among the US veteran population. Diagn Microbiol Infect Dis. 2022;104(2):115770. https://doi.org/10.1016/j.diagmicrobio.2022.115770.
Article CAS PubMed PubMed Central Google Scholar
Capiau S, Stove VV, Lambert WE, Stove CP. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer. Anal Chem. 2013;85(1):404–10. https://doi.org/10.1021/ac303014b.
Article CAS PubMed Google Scholar
Delahaye L, Heughebaert L, Luhr C, Lambrecht S, Stove CP. Near-infrared-based hematocrit prediction of dried blood spots: an in-depth evaluation. Clin Chim Acta. 2021;523:239–46. https://doi.org/10.1016/j.cca.2021.10.002.
Article CAS PubMed Google Scholar
Boffel L, Heughebaert L, Lambrecht S, Luginbühl M, Stove CP. In-depth evaluation of automated non-contact reflectance-based hematocrit prediction of dried blood spots. Analyst. 2022;147(23):5445–54. https://doi.org/10.1039/d2an01642g.
Article CAS PubMed Google Scholar
Heughebaert L, Boffel L, Lühr C, Lambrecht S, Stove C. Near-infrared-based hematocrit determination of dried blood samples collected by volumetric absorptive microsampling: an in-depth evaluation. Microchem J. 2024. https://doi.org/10.2139/ssrn.4735643.
Johar RS, Smith RP. Assessing gravimetric estimation of intraoperative blood loss. J Gynecol Surg. 1993;9(3):151–4. https://doi.org/10.1089/gyn.1993.9.151.
Article CAS PubMed Google Scholar
Ekins R. Immunoassay design and optimization. In: Price CP, Newman DJ, editors. Principles and Practice of Immunoassay. London: Palgrave Macmillan UK; 1991. pp. 96–153.
Deprez S, Heughebaert L, Boffel L, Stove CP. Application of non-contact hematocrit prediction technologies to overcome hematocrit effects on immunosuppressant quantification from dried blood spots. Talanta. 2023;254:124111. https://doi.org/10.1016/j.talanta.2022.124111.
Article CAS PubMed Google Scholar
The Royal College of Pathologists of Australasia Quality Assurance Programs. Pathology Tests 2024 [cited date: 14 March 2024].
Comments (0)