Self-Sampling by Adolescents at Home: Assessment of the Feasibility to Successfully Collect Blood Microsamples by Inexperienced Individuals

Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.

Article  CAS  PubMed  Google Scholar 

Takahashi K, Hattori N, Yokoyama H, Jinno F, Ohtsuka H, Nakai K, et al. Impact of microsampling on toxicological evaluation in rodent safety studies. J Appl Toxicol. 2024;44(1):118–28. https://doi.org/10.1002/jat.4523.

Article  CAS  PubMed  Google Scholar 

Stove CP, Ingels AS, De Kesel PM, Lambert WE. Dried blood spots in toxicology: from the cradle to the grave? Crit Rev Toxicol. 2012;42(3):230–43. https://doi.org/10.3109/10408444.2011.650790.

Article  CAS  PubMed  Google Scholar 

Sadones N, Capiau S, De Kesel PM, Lambert WE, Stove CP. Spot them in the spot: analysis of abused substances using dried blood spots. Bioanalysis. 2014;6(17):2211–27. https://doi.org/10.4155/bio.14.156.

Article  CAS  PubMed  Google Scholar 

Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing 2020/2021. Drug Test Anal. 2022;14(1):7–30. https://doi.org/10.1002/dta.3199.

Article  CAS  PubMed  Google Scholar 

Tey HY, See HH. A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. J Chromatogr A. 2021;1635:461731. https://doi.org/10.1016/j.chroma.2020.461731.

Article  CAS  PubMed  Google Scholar 

Müller IR, Linden G, Charão MF, Antunes MV, Linden R. Dried blood spot sampling for therapeutic drug monitoring: challenges and opportunities. Expert Rev Clin Pharmacol. 2023;16(8):691–701. https://doi.org/10.1080/17512433.2023.2224562.

Article  CAS  PubMed  Google Scholar 

Vidal A, Belova L, Stove C, De Boevre M, De Saeger S. Volumetric absorptive microsampling as an alternative tool for biomonitoring of multi-mycotoxin exposure in resource-limited areas. Toxins (Basel). 2021;13(5). https://doi.org/10.3390/toxins13050345.

Koutsimpani-Wagner A, Quartucci C, Rooney JPK, Bose-O’Reilly S, Rakete S. Mercury biomonitoring in German adults using volumetric absorptive microsampling. Environ Monit Assess. 2022;194(4):315. https://doi.org/10.1007/s10661-022-09962-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

González-Rubio JM, Domínguez-Morueco N, Pedraza-Díaz S, Cañas Portilla A, Lucena M, Rodriguez A, et al. A simple method for direct mercury analysis in dried blood spots (DBS) samples for human biomonitoring studies. Environ Int. 2023;177:107958. https://doi.org/10.1016/j.envint.2023.107958.

Article  CAS  PubMed  Google Scholar 

Partington JM, Marchiandi J, Szabo D, Gooley A, Kouremenos K, Smith F, et al. Validating blood microsampling for per- and polyfluoroalkyl substances quantification in whole blood. J Chromatogr A. 2024;1713:464522. https://doi.org/10.1016/j.chroma.2023.464522.

Article  CAS  PubMed  Google Scholar 

De Kesel PM, Sadones N, Capiau S, Lambert WE, Stove CP. Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis. 2013;5(16):2023–41. https://doi.org/10.4155/bio.13.156.

Article  CAS  PubMed  Google Scholar 

Velghe S, Delahaye L, Stove CP. Is the hematocrit still an issue in quantitative dried blood spot analysis? J Pharm Biomed Anal. 2019;163:188–96. https://doi.org/10.1016/j.jpba.2018.10.010.

Article  CAS  PubMed  Google Scholar 

Delahaye L, Veenhof H, Koch BCP, Alffenaar JC, Linden R, Stove C. Alternative sampling devices to collect dried blood microsamples: state-of-the-art. Ther Drug Monit. 2021;43(3):310–21. https://doi.org/10.1097/ftd.0000000000000864.

Article  PubMed  Google Scholar 

Thangavelu MU, Wouters B, Kindt A, Reiss IKM, Hankemeier T. Blood microsampling technologies: innovations and applications in 2022. Anal Sci Adv. 2023;4(5–6):154–80. https://doi.org/10.1002/ansa.202300011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuur MA, Veenhof H, Aleksa A, Vanʼt Boveneind-Vrubleuskaya N, Darmawan E, Hasnain MG, et al. Quality assessment of dried blood spots from patients with tuberculosis from 4 countries. Ther Drug Monit. 2019;41(6):714–8. https://doi.org/10.1097/ftd.0000000000000659.

Article  PubMed  Google Scholar 

Veenhof H, Koster RA, Junier LAT, Berger SP, Bakker SJL, Touw DJ. Volumetric absorptive microsampling and dried blood spot microsampling vs. conventional venous sampling for tacrolimus trough concentration monitoring. Clin Chem Lab Med. 2020;58(10):1687–95. https://doi.org/10.1515/cclm-2019-1260.

Article  CAS  PubMed  Google Scholar 

Delahaye L, Stove C. Alternative sampling strategies in therapeutic drug monitoring: Microsampling growing toward maturity. Ther Drug Monit. 2021;43(3):307–9. https://doi.org/10.1097/ftd.0000000000000893.

Article  PubMed  Google Scholar 

Van Uytfanghe K, Heughebaert L, Stove CP. Self-sampling at home using volumetric absorptive microsampling: coupling analytical evaluation to volunteers’ perception in the context of a large scale study. Clin Chem Lab Med. 2021;59(5):e185–7. https://doi.org/10.1515/cclm-2020-1180.

Article  CAS  PubMed  Google Scholar 

Boons C, Timmers L, Janssen J, Swart EL, Hugtenburg JG, Hendrikse NH. Feasibility of and patients’ perspective on nilotinib dried blood spot self-sampling. Eur J Clin Pharmacol. 2019;75(6):825–9. https://doi.org/10.1007/s00228-019-02640-1.

Article  CAS  PubMed  Google Scholar 

Otten AT, van der Meulen HH, Steenhuis M, Loeff FC, Touw DJ, Kosterink JGW, et al. Clinical validation of a capillary blood home-based self-sampling technique for monitoring of Infliximab, Vedolizumab, and C-reactive protein concentrations in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2023. https://doi.org/10.1093/ibd/izad103.

Article  PubMed  PubMed Central  Google Scholar 

Mohammed T, Brewer JVV, Pyatt M, Whitbourne SB, Gaziano JM, Edson C, et al. Evaluation of independent self-collected blood specimens for COVID-19 antibody detection among the US veteran population. Diagn Microbiol Infect Dis. 2022;104(2):115770. https://doi.org/10.1016/j.diagmicrobio.2022.115770.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capiau S, Stove VV, Lambert WE, Stove CP. Prediction of the hematocrit of dried blood spots via potassium measurement on a routine clinical chemistry analyzer. Anal Chem. 2013;85(1):404–10. https://doi.org/10.1021/ac303014b.

Article  CAS  PubMed  Google Scholar 

Delahaye L, Heughebaert L, Luhr C, Lambrecht S, Stove CP. Near-infrared-based hematocrit prediction of dried blood spots: an in-depth evaluation. Clin Chim Acta. 2021;523:239–46. https://doi.org/10.1016/j.cca.2021.10.002.

Article  CAS  PubMed  Google Scholar 

Boffel L, Heughebaert L, Lambrecht S, Luginbühl M, Stove CP. In-depth evaluation of automated non-contact reflectance-based hematocrit prediction of dried blood spots. Analyst. 2022;147(23):5445–54. https://doi.org/10.1039/d2an01642g.

Article  CAS  PubMed  Google Scholar 

Heughebaert L, Boffel L, Lühr C, Lambrecht S, Stove C. Near-infrared-based hematocrit determination of dried blood samples collected by volumetric absorptive microsampling: an in-depth evaluation. Microchem J. 2024. https://doi.org/10.2139/ssrn.4735643.

Johar RS, Smith RP. Assessing gravimetric estimation of intraoperative blood loss. J Gynecol Surg. 1993;9(3):151–4. https://doi.org/10.1089/gyn.1993.9.151.

Article  CAS  PubMed  Google Scholar 

Ekins R. Immunoassay design and optimization. In: Price CP, Newman DJ, editors. Principles and Practice of Immunoassay. London: Palgrave Macmillan UK; 1991. pp. 96–153.

Deprez S, Heughebaert L, Boffel L, Stove CP. Application of non-contact hematocrit prediction technologies to overcome hematocrit effects on immunosuppressant quantification from dried blood spots. Talanta. 2023;254:124111. https://doi.org/10.1016/j.talanta.2022.124111.

Article  CAS  PubMed  Google Scholar 

The Royal College of Pathologists of Australasia Quality Assurance Programs. Pathology Tests 2024 [cited date: 14 March 2024].

Comments (0)

No login
gif