World Health Organization. Global vector control response 2017–2030. WHO https://www.who.int/publications/i/item/9789241512978 (2017).
Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 4, 1508–1515 (2019).
Article CAS PubMed PubMed Central Google Scholar
Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 395–408 (2018).
Article CAS PubMed Google Scholar
The Intergovernmental Panel on Climate Change. Climate change 2022: impacts, adaptation and vulnerability. IPCC Sixth Assessment. IPCC https://www.ipcc.ch/report/ar6/wg2/ (2022).
Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
Rose, N. H. et al. Dating the origin and spread of specialization on human hosts in. eLife 12, e83524 (2023).
Article PubMed PubMed Central Google Scholar
Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191 (2018).
Article CAS PubMed Google Scholar
Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656 (2023).
Article CAS PubMed Google Scholar
Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol. 46, 33–41 (2009).
Article CAS PubMed Google Scholar
Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, e58511 (2020).
Article CAS PubMed PubMed Central Google Scholar
Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, e2003489 (2017).
Article PubMed PubMed Central Google Scholar
Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 7460–7465 (2011).
Article CAS PubMed PubMed Central ADS Google Scholar
Ogden, N. H. & Lindsay, L. R. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol. 32, 646–656 (2016).
Ogden, N. H., Ben Beard, C., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on ixodid ticks and the pathogens they transmit: predictions and observations. J. Med. Entomol. 58, 1536–1545 (2020).
Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116, 22512–22517 (2019).
Article CAS PubMed PubMed Central ADS Google Scholar
Lawman, A. E. et al. Unraveling forced responses of extreme El Niño variability over the Holocene. Sci. Adv. 8, eabm4313 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).
Linthicum, K. J. et al. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285, 397–400 (1999).
Article CAS PubMed Google Scholar
Linthicum, K. J., Britch, S. C. & Anyamba, A. Rift valley fever: an emerging mosquito-borne disease. Annu. Rev. Entomol. 61, 395–415 (2016).
Article CAS PubMed Google Scholar
Lindsay, S. W., Bødker, R., Malima, R., Msangeni, H. A. & Kisinza, W. Effect of 1997–98 El Niño on highland malaria in Tanzania. Lancet 355, 989–990 (2000).
Article CAS PubMed Google Scholar
Boyce, R. M. et al. Dihydroartemisinin–piperaquine chemoprevention and malaria incidence after severe flooding: evaluation of a pragmatic intervention in rural Uganda. Clin. Infect. Dis. 74, 2191–2199 (2022).
Article CAS PubMed Google Scholar
Roiz, D., Boussès, P., Simard, F., Paupy, C. & Fontenille, D. Autochthonous chikungunya transmission and extreme climate events in southern France. PLoS Negl. Trop. Dis. 9, e0003854 (2015).
Article PubMed PubMed Central Google Scholar
Grossi-Soyster, E. N. et al. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural community in western Kenya. PLoS Negl. Trop. Dis. 11, e0005998 (2017).
Article PubMed PubMed Central Google Scholar
Diniz, D. F. A., de Albuquerque, C. M. R., Oliva, L. O., de Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit. Vectors 10, 310 (2017).
Article PubMed PubMed Central Google Scholar
Barrera, R. et al. Impacts of hurricanes Irma and Maria on. Am. J. Trop. Med. Hyg. 100, 1413–1420 (2019).
Article PubMed PubMed Central Google Scholar
Caillouët, K. A. & Robertson, S. L. Temporal and spatial impacts of hurricane damage on West Nile virus transmission and human risk. J. Am. Mosq. Control. Assoc. 36, 106–119 (2020).
Paull, S. H. et al. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. Biol. Sci. 284, 20162078 (2017).
PubMed PubMed Central Google Scholar
Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).
Forero-Becerra, E., Acosta, A., Benavides, E., Martínez-Díaz, H. C. & Hidalgo, M. Amblyomma mixtum free-living stages: inferences on dry and wet seasons use, preference, and niche width in an agroecosystem (Yopal, Casanare, Colombia). PLoS ONE 17, e0245109 (2022).
Article CAS PubMed PubMed Central Google Scholar
Weiler, M., Duscher, G. G., Wetscher, M. & Walochnik, J. Tick abundance: a one year study on the impact of flood events along the banks of the River Danube, Austria. Exp. Appl. Acarol. 71, 151–157 (2017).
Article PubMed PubMed Central Google Scholar
Stafford, K. C. Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. J. Med. Entomol. 31, 310–314 (1994).
Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).
Article PubMed PubMed Central Google Scholar
Brady, O. J. et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans. R. Soc. Trop. Med. Hyg. 110, 107–117 (2016).
Article PubMed PubMed Central Google Scholar
Samuel, G. H., Adelman, Z. N. & Myles, K. M. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Curr. Opin. Insect Sci. 16, 108–113 (2016).
Article PubMed PubMed Central Google Scholar
Reisen, W. K., Fang, Y. & Martinez, V. M. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 43, 309–317 (2006).
Mullens, B. A., Tabachnick, W. J., Holbrook, F. R. & Thompson, L. H. Effects of temperature on virogenesis of bluetongue virus serotype 11 in Culicoides variipennis sonorensis. Med. Vet. Entomol. 9, 71–76 (1995).
Article CAS PubMed Google Scholar
Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P. & Biek, R. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc. Biol. Sci. 284, 20170919 (2017).
PubMed PubMed Central Google Scholar
Reisen, W. K., Meyer, R. P., Presser, S. B. & Hardy, J. L. Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 30, 151–160 (1993).
Article CAS PubMed Google Scholar
Kramer, L. D., Hardy, J. L. & Presser, S. B. Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis vir
Comments (0)