Effects of climate change and human activities on vector-borne diseases

World Health Organization. Global vector control response 2017–2030. WHO https://www.who.int/publications/i/item/9789241512978 (2017).

Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 4, 1508–1515 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weaver, S. C., Charlier, C., Vasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 395–408 (2018).

Article  CAS  PubMed  Google Scholar 

The Intergovernmental Panel on Climate Change. Climate change 2022: impacts, adaptation and vulnerability. IPCC Sixth Assessment. IPCC https://www.ipcc.ch/report/ar6/wg2/ (2022).

Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

Article  PubMed  Google Scholar 

Rose, N. H. et al. Dating the origin and spread of specialization on human hosts in. eLife 12, e83524 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Eigenbrode, S. D., Bosque-Pérez, N. A. & Davis, T. S. Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191 (2018).

Article  CAS  PubMed  Google Scholar 

Singh, B. K. et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640–656 (2023).

Article  CAS  PubMed  Google Scholar 

Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol. 46, 33–41 (2009).

Article  CAS  PubMed  Google Scholar 

Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, e58511 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shapiro, L. L. M., Whitehead, S. A. & Thomas, M. B. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 15, e2003489 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 7460–7465 (2011).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Ogden, N. H. & Lindsay, L. R. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol. 32, 646–656 (2016).

Article  PubMed  Google Scholar 

Ogden, N. H., Ben Beard, C., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on ixodid ticks and the pathogens they transmit: predictions and observations. J. Med. Entomol. 58, 1536–1545 (2020).

Article  Google Scholar 

Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116, 22512–22517 (2019).

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Lawman, A. E. et al. Unraveling forced responses of extreme El Niño variability over the Holocene. Sci. Adv. 8, eabm4313 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

Article  ADS  Google Scholar 

Linthicum, K. J. et al. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 285, 397–400 (1999).

Article  CAS  PubMed  Google Scholar 

Linthicum, K. J., Britch, S. C. & Anyamba, A. Rift valley fever: an emerging mosquito-borne disease. Annu. Rev. Entomol. 61, 395–415 (2016).

Article  CAS  PubMed  Google Scholar 

Lindsay, S. W., Bødker, R., Malima, R., Msangeni, H. A. & Kisinza, W. Effect of 1997–98 El Niño on highland malaria in Tanzania. Lancet 355, 989–990 (2000).

Article  CAS  PubMed  Google Scholar 

Boyce, R. M. et al. Dihydroartemisinin–piperaquine chemoprevention and malaria incidence after severe flooding: evaluation of a pragmatic intervention in rural Uganda. Clin. Infect. Dis. 74, 2191–2199 (2022).

Article  CAS  PubMed  Google Scholar 

Roiz, D., Boussès, P., Simard, F., Paupy, C. & Fontenille, D. Autochthonous chikungunya transmission and extreme climate events in southern France. PLoS Negl. Trop. Dis. 9, e0003854 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Grossi-Soyster, E. N. et al. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural community in western Kenya. PLoS Negl. Trop. Dis. 11, e0005998 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Diniz, D. F. A., de Albuquerque, C. M. R., Oliva, L. O., de Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit. Vectors 10, 310 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Barrera, R. et al. Impacts of hurricanes Irma and Maria on. Am. J. Trop. Med. Hyg. 100, 1413–1420 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Caillouët, K. A. & Robertson, S. L. Temporal and spatial impacts of hurricane damage on West Nile virus transmission and human risk. J. Am. Mosq. Control. Assoc. 36, 106–119 (2020).

Article  PubMed  Google Scholar 

Paull, S. H. et al. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. Biol. Sci. 284, 20162078 (2017).

PubMed  PubMed Central  Google Scholar 

Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).

Article  PubMed  Google Scholar 

Forero-Becerra, E., Acosta, A., Benavides, E., Martínez-Díaz, H. C. & Hidalgo, M. Amblyomma mixtum free-living stages: inferences on dry and wet seasons use, preference, and niche width in an agroecosystem (Yopal, Casanare, Colombia). PLoS ONE 17, e0245109 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiler, M., Duscher, G. G., Wetscher, M. & Walochnik, J. Tick abundance: a one year study on the impact of flood events along the banks of the River Danube, Austria. Exp. Appl. Acarol. 71, 151–157 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Stafford, K. C. Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. J. Med. Entomol. 31, 310–314 (1994).

Article  PubMed  Google Scholar 

Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Brady, O. J. et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans. R. Soc. Trop. Med. Hyg. 110, 107–117 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Samuel, G. H., Adelman, Z. N. & Myles, K. M. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Curr. Opin. Insect Sci. 16, 108–113 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Reisen, W. K., Fang, Y. & Martinez, V. M. Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 43, 309–317 (2006).

Article  PubMed  Google Scholar 

Mullens, B. A., Tabachnick, W. J., Holbrook, F. R. & Thompson, L. H. Effects of temperature on virogenesis of bluetongue virus serotype 11 in Culicoides variipennis sonorensis. Med. Vet. Entomol. 9, 71–76 (1995).

Article  CAS  PubMed  Google Scholar 

Jacquot, M., Nomikou, K., Palmarini, M., Mertens, P. & Biek, R. Bluetongue virus spread in Europe is a consequence of climatic, landscape and vertebrate host factors as revealed by phylogeographic inference. Proc. Biol. Sci. 284, 20170919 (2017).

PubMed  PubMed Central  Google Scholar 

Reisen, W. K., Meyer, R. P., Presser, S. B. & Hardy, J. L. Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 30, 151–160 (1993).

Article  CAS  PubMed  Google Scholar 

Kramer, L. D., Hardy, J. L. & Presser, S. B. Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis vir

Comments (0)

No login
gif