Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).
Gattuso, J.-P. & Jiao, N. Ocean-based climate actions recommended by academicians from Europe and China. Sci. China Earth Sci. 65, 1612–1614 (2022).
Jiao, N. Z. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010). To our knowledge, this study is the first to propose the theory of a MCP.
Article CAS PubMed Google Scholar
Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979).
Ducklow, H. W., Steinberg, D. K. & Buesseler, K. O. Upper ocean carbon export and the biological pump. Oceanography 14, 50–58 (2001).
Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E.T. & Broecker, W.S.) 99–110 (AGU, 1985).
Gattuso, J. P., Frankignoulle, M. & Smith, S. V. Measurement of community metabolism and significance in the coral reef CO2 source-sink debate. Proc. Natl Acad. Sci. USA 96, 13017–13022 (1999).
Article ADS CAS PubMed PubMed Central Google Scholar
Gonsior, M., Powers, L., Lahm, M. & McCallister, S. L. New perspectives on the marine carbon cycle — the marine dissolved organic matter reactivity continuum. Environ. Sci. Technol. 56, 5371–5380 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Buesseler, K. O. et al. VERTIGO (VERtical Transport in the Global Ocean): a study of particle sources and flux attenuation in the North Pacific. Deep Sea Res. II 55, 1522–1539 (2008).
Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).
Article CAS PubMed Google Scholar
Chisholm, S. W. Stirring times in the Southern Ocean. Nature 407, 685–687 (2000).
Article ADS CAS PubMed Google Scholar
Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022). This study emphasizes the uncertainty in predicting the role of the BCP in global carbon cycling.
Article ADS CAS Google Scholar
Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).
Article ADS CAS PubMed Google Scholar
Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).
Liang, C. & Balser, T. C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat. Rev. Microbiol. 9, 75 (2011).
Article CAS PubMed Google Scholar
Osterholz, H. et al. Inefficient microbial production of refractory dissolved organic matter in the ocean. Nat. Commun. 6, 7422 (2015).
Article ADS CAS PubMed Google Scholar
Wang, P. et al. Long-term cycles in the carbon reservoir of the Quaternary ocean: a perspective from the South China Sea. Natl. Sci. Rev. 1, 119–143 (2014).
Hansell, D. A., Carlson, C. A. & Schlitzer, R. Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob. Biogeochem. Cycles 26, GB1016 (2012).
Jiao, N. et al. A roadmap for ocean negative carbon emission eco-engineering in sea-farming fields. Innov. Geosci. 1, 100029 (2023). This study describes a road map for the ONCE eco-engineering approach.
Karl, D. M. Microbiological oceanography — hidden in a sea of microbes. Nature 415, 590–591 (2002).
Article CAS PubMed Google Scholar
Ogawa, H. & Tanoue, E. Dissolved organic matter in oceanic waters. J. Oceanogr. 59, 129–147 (2003).
Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).
Dittmar, T. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat. Rev. Earth Env. 2, 570–583 (2021). This article overviews the theories on the long-term persistence of marine dissolved organic matter.
Jiao, N. et al. Unveiling the enigma of refractory carbon in the ocean. Natl Sci. Rev. 5, 459–463 (2018).
He, C. et al. Metagenomic evidence for the microbial transformation of carboxyl-rich alicyclic molecules: a long-term macrocosm experiment. Water Res. 216, 118281 (2022). This study highlights the potential relationship between RDOC and microbial metabolism.
Article CAS PubMed Google Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006).
Article ADS CAS PubMed Google Scholar
Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).
Article ADS CAS PubMed PubMed Central Google Scholar
Schwalbach, M. S. et al. The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ. Microbiol. 12, 490–500 (2010).
Article CAS PubMed Google Scholar
Wells, L. E. & Deming, J. W. Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter. Aquat. Microb. Ecol. 43, 209–221 (2006).
Jiao, N. et al. Mechanisms of microbial carbon sequestration in the ocean future research directions. Biogeosciences 11, 5285–5306 (2014).
Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 331–333 (2015). This study supports the dilution hypothesis to explain DOC consumption by microorganisms in the deep ocean.
Article ADS CAS PubMed Google Scholar
Shen, Y. & Benner, R. Molecular properties are a primary control on the microbial utilization of dissolved organic matter in the ocean. Limnol. Oceanogr. 65, 1061–1071 (2020).
Article ADS CAS Google Scholar
Jiao, N. et al. Comment on “Dilution limits dissolved organic carbon utilization in the deep ocean”. Science 350, 148 (2015).
Lennartz, S. T. & Dittmar, T. Controls on turnover of marine dissolved organic matter — testing the null hypothesis of purely concentration-driven uptake: comment on Shen and Benner, “Molecular properties are a primary control on the microbial utilization of dissolved organic matter in the ocean”. Limnol. Oceanogr. 67, 673–679 (2022).
Wang, N. et al. Contribution of structural recalcitrance to the formation of the deep oceanic dissolved organic carbon reservoir. Environ. Microbiol. Rep. 10, 711–717 (2018).
Article CAS PubMed Google Scholar
Jiao, N. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump (in Chinese). Sci. Sin. Terrae 42, 1473–1486 (2012).
Jiao, N. et al. Why productive upwelling areas are often sources rather than sinks of CO2? — A comparative study on eddy upwellings in the South China Sea. Biogeosci. Discuss. 10, 13399–13426 (2013).
Jiao, N., Wang, H., Xu, G. & Aricò, S. Blue carbon on the rise: challenges and opportunities. Natl Sci. Rev. 5, 464–468 (2018).
Hopkinson, C. S. & Vallino, J. J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433, 142–145 (2005).
Article ADS CAS PubMed Google Scholar
Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1050 (2017).
Article ADS CAS PubMed Google Scholar
Hansell, D. A. Recalcitrant dissolved organic carbon fractions. Annu. Rev. Mar. Sci. 5, 421–445 (2013). This study presents a detailed description of recalcitrant DOC fractions.
Bauer, J. E., Williams, P. M. & Druffel, E. R. M. C-14 activity of dissolved organic-carbon fractions in the North-Central Pacific and Sargasso Sea. Nature 357, 667–670 (1992).
Comments (0)