Drug-resistant tuberculosis: a persistent global health concern

Peto, H. M., Pratt, R. H., Harrington, T. A., LoBue, P. A. & Armstrong, L. R. Epidemiology of extrapulmonary tuberculosis in the United States, 1993–2006. Clin. Infect. Dis. 49, 1350–1357 (2009).

Article  PubMed  Google Scholar 

WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment — Drug-resistant Tuberculosis Treatment, 2022 Update. World Health Organization https://www.who.int/publications/i/item/9789240063129 (2022).

WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment — Drug-susceptible Tuberculosis Treatment. World Health Organization https://www.who.int/publications/i/item/9789240048126 (2022).

WHO Consolidated Guidelines on Tuberculosis. Module 3: Diagnosis — Rapid Diagnostics For Tuberculosis Detection, 2021 Update. World Health Organization https://www.who.int/publications/i/item/9789240029415 (2021).

Cohen, K. A., Manson, A. L., Desjardins, C. A., Abeel, T. & Earl, A. M. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med. 11, 45 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Cohen, K. A. et al. Extensive global movement of multidrug-resistant Mycobacterium tuberculosis strains revealed by whole-genome analysis. Thorax 74, 882–889 (2019).

Article  PubMed  Google Scholar 

Short-course chemotherapy in pulmonary tuberculosis: a controlled trial by the British Thoracic and Tuberculosis Association. Lancet 305, 119–124 (1975).

Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol. 45, 529–564 (2005).

Article  CAS  PubMed  Google Scholar 

Global Tuberculosis Report 2022. World Health Organization https://www.who.int/publications/i/item/9789240061729 (2022).

Global Tuberculosis Report 2021. World Health Organization https://www.who.int/publications/i/item/9789240037021 (2021).

Boehme, C. C. et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

The Use of Molecular Line Probe Assay for the Detection of Resistance to Isoniazid and Rifampicin: Policy Update. World Health Organization https://www.who.int/publications/i/item/9789241511261 (2016).

Dixit, A. et al. Estimation of country-specific tuberculosis antibiograms using genomic data. Preprint at medRxiv https://doi.org/10.1101/2021.09.23.21263991 (2021).

Article  Google Scholar 

O’Connor, C. & Brady, M. F. Isoniazid. StatPearls [Internet] https://pubmed.ncbi.nlm.nih.gov/32491549/ (updated 8 April 2022).

Yee, D. et al. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am. J. Respir. Crit. Care Med. 167, 1472–1477 (2003).

Article  PubMed  Google Scholar 

Murray, J. F., Schraufnagel, D. E. & Hopewell, P. C. Treatment of tuberculosis: a historical perspective. Ann. Am. Thorac. Soc. 12, 1749–1759 (2015).

Article  PubMed  Google Scholar 

Jacobson, K. R. et al. Treatment outcomes of isoniazid-resistant tuberculosis patients, Western Cape Province, South Africa. Clin. Infect. Dis. 53, 369–372 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Ahmad, N., Ahuja, S. & Akkerman, O. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet 392, 821–834 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Stagg, H. R. et al. Fluoroquinolones and isoniazid-resistant tuberculosis: implications for the 2018 WHO guidance. Eur. Respir. J. 54, 1900982 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

WHO Treatment Guidelines for Isoniazid-resistant Tuberculosis: Supplement to the WHO Treatment Guidelines for Drug-resistant Tuberculosis. World Health Organization https://www.who.int/publications/i/item/9789241550079 (2018).

Meeting Report of the WHO Expert Consultation on the Definition of extensively Drug-Resistant Tuberculosis, 27-29 October 2020. World Health Organization https://www.who.int/publications/i/item/9789240018662 (2021).

Global Tuberculosis Report 2023. World Health Organization https://www.who.int/publications/i/item/9789240083851 (2023).

Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

Article  CAS  Google Scholar 

Knight, G. M., McQuaid, C. F., Dodd, P. J. & Houben, R. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling. Lancet Infect. Dis. 19, 903–912 (2019).

Article  PubMed  PubMed Central  Google Scholar 

WHO Global Task Force on TB Impact Measurement: Report of a Subgroup Meeting on Methods Used by WHO to Estimate TB Disease Burden, 11-12 May 2022, Geneva, Switzerland. World Health Organization https://www.who.int/publications/i/item/9789240057647 (2022).

Global Tuberculosis Report 2015. World Health Organization https://www.who.int/publications/i/item/9789241565059 (2015).

Global Tuberculosis Report 2020. World Health Organization https://www.who.int/publications/i/item/9789240013131 (2020).

Villegas, L. et al. Prevalence, risk factors, and treatment outcomes of isoniazid- and rifampicin-mono-resistant pulmonary tuberculosis in Lima, Peru. PLoS ONE 11, e0152933 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Sharling, L., Marks, S. M., Goodman, M., Chorba, T. & Mase, S. Rifampin-resistant tuberculosis in the United States, 1998-2014. Clin. Infect. Dis. 70, 1596–1605 (2019).

Article  Google Scholar 

Ismail, N. A. et al. Prevalence of drug-resistant tuberculosis and imputed burden in South Africa: a national and sub-national cross-sectional survey. Lancet Infect. Dis. 18, 779–787 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Dean, A. S. Prevalence and genetic profiles of isoniazid resistance in tuberculosis patients: a multicountry analysis of cross-sectional data. PLoS Med. 17, e1003008 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Subbaraman, R., Jhaveri, T. & Nathavitharana, R. R. Closing gaps in the tuberculosis care cascade: an action-oriented research agenda. J. Clin. Tuberc. Mycobact. Dis. 19, 100144 (2020).

Google Scholar 

Subbaraman, R. et al. Constructing care cascades for active tuberculosis: a strategy for program monitoring and identifying gaps in quality of care. PLoS Med. 16, e1002754 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Naidoo, P. et al. The South African tuberculosis care cascade: estimated losses and methodological challenges. J. Infect. Dis. 216, S702–S713 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Subbaraman, R. et al. The tuberculosis cascade of care in India’s public sector: a systematic review and meta-analysis. PLoS Med. 13, e1002149 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Migliori, G. B. et al. Gauging the impact of the COVID-19 pandemic on tuberculosis services: a global study. Eur. Respir. J. 58, 2101786 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniels, B. et al. Use of standardised patients to assess quality of healthcare in Nairobi, Kenya: a pilot, cross-sectional study with international comparisons. BMJ Glob. Health 2, e000333 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Daniels, B., Kwan, A. & Pai, M. Lessons on the quality of tuberculosis diagnosis from standardized patients in China, India, Kenya, and South. Afr. J. Clin. Tuberc. Mycobact. Dis. 16, 100109 (2019).

Google Scholar 

Boffa, J. et al. Quality of care for tuberculosis and HIV in the private health sector: a cross-sectional, standardised patient study in South Africa. BMJ Glob. Health 6, e005250 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kwan, A. et al. Variations in the quality of tuberculosis care in urban India: a cross-sectional, standardized patient study in two cities. PLoS Med. 15, e1002653 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Daniels, B. et al. Tuberculosis diagnosis and management in the public versus private sector: a standardised patients study in Mumbai, India. BMJ Glob. Health 7, 009657 (2022).

Article  Google Scholar 

Demers, A. M. et al. Drug susceptibility patterns of Mycobacterium tuberculosis from adults with multidrug-resistant tuberculosis and implications for a household contact preventive therapy trial. BMC Infect. Dis. 21, 205 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Step up for TB 2020 report: Tuberculosis Policies in 37 Countries. Médecins Sans Frontières & Stop TB Partnership https://msfaccess.org/step-tb-tb-policies-37-countries-4th-ed (2020).

Omar, S. V., Ismail, F., Ndjeka, N., Kaniga, K. & Ismail, N. A. Bedaquiline-resistant tuberculosis associated with Rv0678 mutations. N. Engl. J. Med. 386, 93–94 (2022).

Article  PubMed  Google Scholar 

Ismail, N. A. et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect. Dis. 22, 496–506 (2022).

Article  CAS  PubMed  Google Scholar 

Azimi, T. et al. Linezolid resistance in multidrug-resistant Mycobacterium tuberculosis: a systematic review and meta-analysis. Front. Pharmacol. 13, 955050 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chesov, E. et al. Emergence of bedaquiline resistance in a high tuberculosis burden country. Eur. Respir. J. 59, 2100621 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mallick, J. S., Nair, P., Abbew, E. T., Van Deun, A. & Decroo, T. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob. Resist. 4, dlac029 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Jenkins, H. E. & Yuen, C. M. The burden of multidrug-resistant tuberculosis in children. Int. J. Tuberc. Lung Dis. 22, 3–6 (2018).

Article  CAS  PubMed 

Comments (0)

No login
gif