Hayter SM, Cook MC (2012) Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev 11(10):754–765. https://doi.org/10.1016/j.autrev.2012.02.001
Mitratza M, Klijs B, Hak AE, Kardaun JWPF, Kunst AE (2021) Systemic autoimmune disease as a cause of death: mortality burden and comorbidities. Rheumatology (Oxford) 60(3):1321–1330. https://doi.org/10.1093/rheumatology/keaa537
Carter EE, Barr SG, Clarke AE (2016) The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol 12(10):605–620. https://doi.org/10.1038/nrrheum.2016.137
Rubin SJS, Bloom MS, Robinson WH (2019) B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol 15(5):303–315. https://doi.org/10.1038/s41584-019-0211-0
Zheng B, Yang Y, Chen L, Wu M, Zhou S (2022) B-cell receptor repertoire sequencing: deeper digging into the mechanisms and clinical aspects of immune-mediated diseases. iScience 25(10):105002. https://doi.org/10.1016/j.isci.2022.105002
Article CAS PubMed PubMed Central Google Scholar
Jabbour E et al (2023) The evolution of acute lymphoblastic leukemia research and therapy at MD Anderson over four decades. J Hematol Oncol 16(1):22. https://doi.org/10.1186/s13045-023-01409-5
Article PubMed PubMed Central Google Scholar
Bashford-Rogers RJM et al (2019) Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574(7776):122–126. https://doi.org/10.1038/s41586-019-1595-3
Article CAS PubMed PubMed Central Google Scholar
Tipton CM et al (2015) Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol 16(7):755–765. https://doi.org/10.1038/ni.3175
Article CAS PubMed PubMed Central Google Scholar
Early P, Huang H, Davis M, Calame K, Hood L (1980) An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell 19(4):981–992. https://doi.org/10.1016/0092-8674(80)90089-6
Article CAS PubMed Google Scholar
Weigert M, Gatmaitan L, Loh E, Schilling J, Hood L (1978) Rearrangement of genetic information may produce immunoglobulin diversity. Nature 276(5690):785–790. https://doi.org/10.1038/276785a0
Article CAS PubMed Google Scholar
Collins AM, Watson CT (2018) Immunoglobulin light chain gene rearrangements, receptor editing and the development of a self-tolerant antibody repertoire. Front Immunol 9:2249. https://doi.org/10.3389/fimmu.2018.02249
Article CAS PubMed PubMed Central Google Scholar
Jung D, Giallourakis C, Mostoslavsky R, Alt FW (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24:541–570. https://doi.org/10.1146/annurev.immunol.23.021704.115830
Article CAS PubMed Google Scholar
Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz DG (2010) The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141(3):419–431. https://doi.org/10.1016/j.cell.2010.03.010
Article CAS PubMed PubMed Central Google Scholar
Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224(2):487–499. https://doi.org/10.1016/0022-2836(92)91010-m
Article CAS PubMed Google Scholar
Stewart AK, Schwartz RS (1994) Immunoglobulin V regions and the B cell. Blood 83(7):1717–1730
Article CAS PubMed Google Scholar
Di Noia JM, Neuberger MS (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22. https://doi.org/10.1146/annurev.biochem.76.061705.090740
Article CAS PubMed Google Scholar
Wilson PC et al (1998) Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J Exp Med 187(1):59–70. https://doi.org/10.1084/jem.187.1.59
Article CAS PubMed PubMed Central Google Scholar
Cyster JG, Allen CDC (2019) B cell responses: cell interaction dynamics and decisions. Cell 177(3):524–540. https://doi.org/10.1016/j.cell.2019.03.016
Article CAS PubMed PubMed Central Google Scholar
Boyd SD et al (2009) Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci Transl Med 1(12):12ra23. https://doi.org/10.1126/scitranslmed.3000540
Article CAS PubMed PubMed Central Google Scholar
Klein U, Küppers R, Rajewsky K (1997) Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood 89(4):1288–1298
Article CAS PubMed Google Scholar
Lin SG, Ba Z, Du Z, Zhang Y, Hu J, Alt FW (2016) Highly sensitive and unbiased approach for elucidating antibody repertoires. Proc Natl Acad Sci USA 113(28):7846–7851. https://doi.org/10.1073/pnas.1608649113
Article CAS PubMed PubMed Central Google Scholar
Mamanova L et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7(2):111–118. https://doi.org/10.1038/nmeth.1419
Article CAS PubMed Google Scholar
Bashford-Rogers RJM et al (2014) Capturing needles in haystacks: a comparison of B-cell receptor sequencing methods. BMC Immunol 15:29. https://doi.org/10.1186/s12865-014-0029-0
Article CAS PubMed PubMed Central Google Scholar
Yeku O, Frohman MA (2011) Rapid amplification of cDNA ends (RACE). Methods Mol Biol 703:107–122. https://doi.org/10.1007/978-1-59745-248-9_8
Article CAS PubMed Google Scholar
Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci USA 108(23):9530–9535. https://doi.org/10.1073/pnas.1105422108
Article PubMed PubMed Central Google Scholar
He L et al (2014) Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding. Sci Rep 4:6778. https://doi.org/10.1038/srep06778
Article CAS PubMed PubMed Central Google Scholar
Streets AM et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci USA 111(19):7048–7053. https://doi.org/10.1073/pnas.1402030111
Article CAS PubMed PubMed Central Google Scholar
Zheng GXY et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049
Article CAS PubMed PubMed Central Google Scholar
Goldstein LD et al (2019) Massively parallel single-cell B-cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun Biol 2:304. https://doi.org/10.1038/s42003-019-0551-y
Article PubMed PubMed Central Google Scholar
Nemazee D (2017) Mechanisms of central tolerance for B cells. Nat Rev Immunol 17(5):281–294. https://doi.org/10.1038/nri.2017.19
Article CAS PubMed PubMed Central Google Scholar
Getahun A (2022) Role of inhibitory signaling in peripheral B cell tolerance. Immunol Rev 307(1):27–42. https://doi.org/10.1111/imr.13070
Article CAS PubMed PubMed Central Google Scholar
Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC (2003) Predominant autoantibody production by early human B cell precursors. Science 301(5638):1374–1377. https://doi.org/10.1126/science.1086907
Article CAS PubMed Google Scholar
Kinnunen T et al (2013) Specific peripheral B cell tolerance defects in patients with multiple sclerosis. J Clin Invest 123(6):2737–2741. https://doi.org/10.1172/JCI68775
Comments (0)