Zuiderwijk M et al (2018) Leukocyte dynamics during the evolution of human coronary atherosclerosis: conclusions from a sevenfold, chromogen-based, immunohistochemical evaluation. Am J Pathol 188(7):1524–1529
Article CAS PubMed Google Scholar
van Dijk RA et al (2015) A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis. J Am Heart Assoc 4(4)
Plotkin JD et al (2017) NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation. Nanomedicine 13(6):2037–2048
Article CAS PubMed Google Scholar
Liu CL et al (2016) Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice. Transl Res 171:1–16
Article PubMed PubMed Central Google Scholar
Lambert K et al (2019) Postmortem IgE determination in coronary artery disease. J Forensic Leg Med 62:1–6
Kaartinen M, Penttilä A, Kovanen PT (1994) Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 90(4):1669–1678
Article CAS PubMed Google Scholar
Kritikou E et al (2019) Hypercholesterolemia induces a mast cell-CD4(+) T cell interaction in atherosclerosis. J Immunol 202(5):1531–1539
Article CAS PubMed Google Scholar
Barrett TJ (2020) Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol 40(1):20–33
Article CAS PubMed Google Scholar
Kume N et al (2000) Inducible expression of LOX-1, a novel receptor for oxidized LDL, in macrophages and vascular smooth muscle cells. Ann N Y Acad Sci 902:323–327
Article CAS PubMed Google Scholar
Kritikou E et al (2019) Disruption of a CD1d-mediated interaction between mast cells and NKT cells aggravates atherosclerosis. Atherosclerosis 280:132–139
Article CAS PubMed Google Scholar
Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721
Article CAS PubMed PubMed Central Google Scholar
Saigusa R, Winkels H, Ley K (2020) T cell subsets and functions in atherosclerosis. Nat Rev Cardiol 17(7):387–401
Article CAS PubMed PubMed Central Google Scholar
Nakai Y et al (2004) Natural killer T cells accelerate atherogenesis in mice. Blood 104(7):2051–2059
Article CAS PubMed Google Scholar
Libby P, Hansson GK (2019) From focal lipid storage to systemic inflammation: JACC review topic of the week. J Am Coll Cardiol 74(12):1594–1607
Article CAS PubMed PubMed Central Google Scholar
Major AS, Fazio S, Linton MF (2002) B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol 22(11):1892–1898
Article CAS PubMed Google Scholar
Qian C et al (2021) Comprehensive analysis of dysregulated genes associated with atherosclerotic plaque destabilization. Exp Biol Med (Maywood) 246(23):2487–2494
Article CAS PubMed Google Scholar
Liu Q et al (2022) Major vault protein prevents atherosclerotic plaque destabilization by suppressing macrophage ASK1-JNK signaling. Arterioscler Thromb Vasc Biol 42(5):580–596
Li T et al (2020) The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediators Inflamm 2020:3872367
Article PubMed PubMed Central Google Scholar
Constantinides P (1953) Mast cells and susceptibility to experimental atherosclerosis. Science 117(3045):505–506
Article CAS PubMed Google Scholar
Wezel A et al (2015) Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression. Atherosclerosis 241(2):289–296
Article CAS PubMed Google Scholar
Wang Y et al (2001) Mast cell chymase inhibits smooth muscle cell growth and collagen expression in vitro: transforming growth factor-beta1-dependent and -independent effects. Arterioscler Thromb Vasc Biol 21(12):1928–1933
Article CAS PubMed Google Scholar
Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92(5):1084–1088
Article CAS PubMed Google Scholar
Ramalho LS et al (2013) Role of mast cell chymase and tryptase in the progression of atherosclerosis: study in 44 autopsied cases. Ann Diagn Pathol 17(1):28–31
Munteanu AI, Raica M, Zota EG (2016) Immunohistochemical study of the role of mast cells and macrophages in the process of angiogenesis in the atherosclerotic plaques in patients with metabolic syndrome. Arkh Patol 78(2):19–28
Article CAS PubMed Google Scholar
Joo SP et al (2020) Vasa vasorum densities in human carotid atherosclerosis is associated with plaque development and vulnerability. J Korean Neurosurg Soc 63(2):178–187
Article CAS PubMed Google Scholar
Mekke JM et al (2021) Mast cell distribution in human carotid atherosclerotic plaque differs significantly by histological segment. Eur J Vasc Endovasc Surg 62(5):808–815
Willems S et al (2013) Mast cells in human carotid atherosclerotic plaques are associated with intraplaque microvessel density and the occurrence of future cardiovascular events. Eur Heart J 34(48):3699–3706
Article CAS PubMed Google Scholar
Skenteris NT et al (2023) Mast cells participate in smooth muscle cell reprogramming and atherosclerotic plaque calcification. Vascul Pharmacol 150:107167
Article CAS PubMed Google Scholar
Stemme S et al (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A 92(9):3893–3897
Article CAS PubMed PubMed Central Google Scholar
Ribatti D, Tamma R, Komi DE (2019) The morphological basis of the development of the chick embryo immune system. Exp Cell Res 381(2):323–329
Article CAS PubMed Google Scholar
Foks AC et al (2013) Interruption of the OX40-OX40 ligand pathway in LDL receptor-deficient mice causes regression of atherosclerosis. J Immunol 191(9):4573–4580
Article CAS PubMed Google Scholar
VanderLaan PA et al (2019) Invariant natural killer T-cells and total CD1d restricted cells differentially influence lipid metabolism and atherosclerosis in low density receptor deficient mice. Int J Mol Sci 20(18)
Chillo O et al (2016) Perivascular mast cells govern shear stress-induced arteriogenesis by orchestrating leukocyte function. Cell Rep 16(8):2197–2207
Article CAS PubMed Google Scholar
Kokkonen JO, Kovanen PT (1987) Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc Natl Acad Sci U S A 84(8):2287–2291
Article CAS PubMed PubMed Central Google Scholar
Kovanen PT (1991) Mast cell granule-mediated uptake of low density lipoproteins by macrophages: a novel carrier mechanism leading to the formation of foam cells. Ann Med 23(5):551–559
Article CAS PubMed Google Scholar
Kovanen PT (1993) The mast cell–a potential link between inflammation and cellular cholesterol deposition in atherogenesis. Eur Heart J 14(Suppl K):105–17
Ma H, Kovanen PT (1995) IgE-dependent generation of foam cells: an immune mechanism involving degranulation of sensitized mast cells with resultant uptake of LDL by macrophages. Arterioscler Thromb Vasc Biol 15(6):811–819
Article CAS PubMed Google Scholar
Bot I et al (2007) Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 115(19):2516–2525
Article CAS PubMed Google Scholar
Hung J et al (2020) Novel plaque enriched long noncoding RNA in atherosclerotic macrophage regulation (PELATON). Arterioscler Thromb Vasc Biol 40(3):697–713
Comments (0)