Cellular and Molecular Mechanisms of Mast Cells in Atherosclerotic Plaque Progression and Destabilization

Zuiderwijk M et al (2018) Leukocyte dynamics during the evolution of human coronary atherosclerosis: conclusions from a sevenfold, chromogen-based, immunohistochemical evaluation. Am J Pathol 188(7):1524–1529

Article  CAS  PubMed  Google Scholar 

van Dijk RA et al (2015) A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis. J Am Heart Assoc 4(4)

Plotkin JD et al (2017) NF-κB inhibitors that prevent foam cell formation and atherosclerotic plaque accumulation. Nanomedicine 13(6):2037–2048

Article  CAS  PubMed  Google Scholar 

Liu CL et al (2016) Allergic lung inflammation promotes atherosclerosis in apolipoprotein E-deficient mice. Transl Res 171:1–16

Article  PubMed  PubMed Central  Google Scholar 

Lambert K et al (2019) Postmortem IgE determination in coronary artery disease. J Forensic Leg Med 62:1–6

Article  PubMed  Google Scholar 

Kaartinen M, Penttilä A, Kovanen PT (1994) Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 90(4):1669–1678

Article  CAS  PubMed  Google Scholar 

Kritikou E et al (2019) Hypercholesterolemia induces a mast cell-CD4(+) T cell interaction in atherosclerosis. J Immunol 202(5):1531–1539

Article  CAS  PubMed  Google Scholar 

Barrett TJ (2020) Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol 40(1):20–33

Article  CAS  PubMed  Google Scholar 

Kume N et al (2000) Inducible expression of LOX-1, a novel receptor for oxidized LDL, in macrophages and vascular smooth muscle cells. Ann N Y Acad Sci 902:323–327

Article  CAS  PubMed  Google Scholar 

Kritikou E et al (2019) Disruption of a CD1d-mediated interaction between mast cells and NKT cells aggravates atherosclerosis. Atherosclerosis 280:132–139

Article  CAS  PubMed  Google Scholar 

Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saigusa R, Winkels H, Ley K (2020) T cell subsets and functions in atherosclerosis. Nat Rev Cardiol 17(7):387–401

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakai Y et al (2004) Natural killer T cells accelerate atherogenesis in mice. Blood 104(7):2051–2059

Article  CAS  PubMed  Google Scholar 

Libby P, Hansson GK (2019) From focal lipid storage to systemic inflammation: JACC review topic of the week. J Am Coll Cardiol 74(12):1594–1607

Article  CAS  PubMed  PubMed Central  Google Scholar 

Major AS, Fazio S, Linton MF (2002) B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler Thromb Vasc Biol 22(11):1892–1898

Article  CAS  PubMed  Google Scholar 

Qian C et al (2021) Comprehensive analysis of dysregulated genes associated with atherosclerotic plaque destabilization. Exp Biol Med (Maywood) 246(23):2487–2494

Article  CAS  PubMed  Google Scholar 

Liu Q et al (2022) Major vault protein prevents atherosclerotic plaque destabilization by suppressing macrophage ASK1-JNK signaling. Arterioscler Thromb Vasc Biol 42(5):580–596

Article  PubMed  Google Scholar 

Li T et al (2020) The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediators Inflamm 2020:3872367

Article  PubMed  PubMed Central  Google Scholar 

Constantinides P (1953) Mast cells and susceptibility to experimental atherosclerosis. Science 117(3045):505–506

Article  CAS  PubMed  Google Scholar 

Wezel A et al (2015) Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression. Atherosclerosis 241(2):289–296

Article  CAS  PubMed  Google Scholar 

Wang Y et al (2001) Mast cell chymase inhibits smooth muscle cell growth and collagen expression in vitro: transforming growth factor-beta1-dependent and -independent effects. Arterioscler Thromb Vasc Biol 21(12):1928–1933

Article  CAS  PubMed  Google Scholar 

Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92(5):1084–1088

Article  CAS  PubMed  Google Scholar 

Ramalho LS et al (2013) Role of mast cell chymase and tryptase in the progression of atherosclerosis: study in 44 autopsied cases. Ann Diagn Pathol 17(1):28–31

Article  PubMed  Google Scholar 

Munteanu AI, Raica M, Zota EG (2016) Immunohistochemical study of the role of mast cells and macrophages in the process of angiogenesis in the atherosclerotic plaques in patients with metabolic syndrome. Arkh Patol 78(2):19–28

Article  CAS  PubMed  Google Scholar 

Joo SP et al (2020) Vasa vasorum densities in human carotid atherosclerosis is associated with plaque development and vulnerability. J Korean Neurosurg Soc 63(2):178–187

Article  CAS  PubMed  Google Scholar 

Mekke JM et al (2021) Mast cell distribution in human carotid atherosclerotic plaque differs significantly by histological segment. Eur J Vasc Endovasc Surg 62(5):808–815

Article  PubMed  Google Scholar 

Willems S et al (2013) Mast cells in human carotid atherosclerotic plaques are associated with intraplaque microvessel density and the occurrence of future cardiovascular events. Eur Heart J 34(48):3699–3706

Article  CAS  PubMed  Google Scholar 

Skenteris NT et al (2023) Mast cells participate in smooth muscle cell reprogramming and atherosclerotic plaque calcification. Vascul Pharmacol 150:107167

Article  CAS  PubMed  Google Scholar 

Stemme S et al (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A 92(9):3893–3897

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribatti D, Tamma R, Komi DE (2019) The morphological basis of the development of the chick embryo immune system. Exp Cell Res 381(2):323–329

Article  CAS  PubMed  Google Scholar 

Foks AC et al (2013) Interruption of the OX40-OX40 ligand pathway in LDL receptor-deficient mice causes regression of atherosclerosis. J Immunol 191(9):4573–4580

Article  CAS  PubMed  Google Scholar 

VanderLaan PA et al (2019) Invariant natural killer T-cells and total CD1d restricted cells differentially influence lipid metabolism and atherosclerosis in low density receptor deficient mice. Int J Mol Sci 20(18)

Chillo O et al (2016) Perivascular mast cells govern shear stress-induced arteriogenesis by orchestrating leukocyte function. Cell Rep 16(8):2197–2207

Article  CAS  PubMed  Google Scholar 

Kokkonen JO, Kovanen PT (1987) Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc Natl Acad Sci U S A 84(8):2287–2291

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovanen PT (1991) Mast cell granule-mediated uptake of low density lipoproteins by macrophages: a novel carrier mechanism leading to the formation of foam cells. Ann Med 23(5):551–559

Article  CAS  PubMed  Google Scholar 

Kovanen PT (1993) The mast cell–a potential link between inflammation and cellular cholesterol deposition in atherogenesis. Eur Heart J 14(Suppl K):105–17

PubMed  Google Scholar 

Ma H, Kovanen PT (1995) IgE-dependent generation of foam cells: an immune mechanism involving degranulation of sensitized mast cells with resultant uptake of LDL by macrophages. Arterioscler Thromb Vasc Biol 15(6):811–819

Article  CAS  PubMed  Google Scholar 

Bot I et al (2007) Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 115(19):2516–2525

Article  CAS  PubMed  Google Scholar 

Hung J et al (2020) Novel plaque enriched long noncoding RNA in atherosclerotic macrophage regulation (PELATON). Arterioscler Thromb Vasc Biol 40(3):697–713

Article  CAS  PubMed 

Comments (0)

No login
gif