Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001).
Article CAS PubMed Google Scholar
Corden, J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113, 8423–8455 (2013).
Article CAS PubMed PubMed Central Google Scholar
Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).
Article CAS PubMed Google Scholar
Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017).
Article CAS PubMed Google Scholar
Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).
Article CAS PubMed PubMed Central Google Scholar
Thompson, C. M., Koleske, A. J., Chao, D. M. & Young, R. A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361–1375 (1993).
Article CAS PubMed Google Scholar
West, M. L. & Corden, J. L. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140, 1223–1233 (1995).
Article CAS PubMed PubMed Central Google Scholar
Hsin, J. P., Sheth, A. & Manley, J. L. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′-end processing. Science 334, 683–686 (2011).
Article CAS PubMed PubMed Central Google Scholar
Bartolomei, M. S., Halden, N. F., Cullen, C. R. & Corden, J. L. Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol. Cell. Biol. 8, 330–339 (1988).
CAS PubMed PubMed Central Google Scholar
Litingtung, Y. et al. Growth retardation and neonatal lethality in mice with a homozygous deletion in the C-terminal domain of RNA polymerase II. Mol. Gen. Genet. 261, 100–105 (1999).
Article CAS PubMed Google Scholar
Babokhov, M., Mosaheb, M. M., Baker, R. W. & Fuchs, S. M. Repeat-specific functions for the C-terminal domain of RNA polymerase II in budding yeast. G3 (Bethesda) 8, 1593–1601 (2018).
Article CAS PubMed Google Scholar
Meisels, E., Gileadi, O. & Corden, J. L. Partial truncation of the yeast RNA polymerase II carboxyl-terminal domain preferentially reduces expression of glycolytic genes. J. Biol. Chem. 270, 31255–31261 (1995).
Article CAS PubMed Google Scholar
Quintero-Cadena, P., Lenstra, T. L. & Sternberg, P. W. RNA Pol II length and disorder enable cooperative scaling of transcriptional bursting. Mol. Cell 79, 207–220 e208 (2020).
Article CAS PubMed Google Scholar
Sawicka, A. et al. Transcription activation depends on the length of the RNA polymerase II C-terminal domain. EMBO J. 40, e107015 (2021).
Article CAS PubMed PubMed Central Google Scholar
Allison, L. A. & Ingles, C. J. Mutations in RNA polymerase II enhance or suppress mutations in GAL4. Proc. Natl Acad. Sci. USA 86, 2794–2798 (1989).
Article CAS PubMed PubMed Central Google Scholar
Scafe, C. et al. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature 347, 491–494 (1990).
Article CAS PubMed Google Scholar
Gerber, H. P. et al. RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature 374, 660–662 (1995).
Article CAS PubMed Google Scholar
Chapman, R. D., Heidemann, M., Hintermair, C. & Eick, D. Molecular evolution of the RNA polymerase II CTD. Trends Genet. 24, 289–296 (2008).
Article CAS PubMed Google Scholar
Yang, C. & Stiller, J. W. Evolutionary diversity and taxon-specific modifications of the RNA polymerase II C-terminal domain. Proc. Natl Acad. Sci. USA 111, 5920–5925 (2014).
Article CAS PubMed PubMed Central Google Scholar
Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).
Article CAS PubMed Google Scholar
Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).
Article CAS PubMed PubMed Central Google Scholar
Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cho, W. K. et al. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife https://doi.org/10.7554/eLife.13617 (2016).
Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).
Article CAS PubMed Google Scholar
Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
Article CAS PubMed PubMed Central Google Scholar
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e1816 (2018).
Article CAS PubMed Google Scholar
Wei, M. T. et al. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22, 1187–1196 (2020).
Article CAS PubMed Google Scholar
McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).
Article CAS PubMed PubMed Central Google Scholar
Musacchio, A. On the role of phase separation in the biogenesis of membraneless compartments. EMBO J. 41, e109952 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science https://doi.org/10.1126/science.aar2555 (2018).
Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. J. Mol. Biol. 434, 167216 (2022).
Article CAS PubMed Google Scholar
Tjong, H., Gong, K., Chen, L. & Alber, F. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res. 22, 1295–1305 (2012).
Article CAS PubMed PubMed Central Google Scholar
Gasser, S. M., Hediger, F., Taddei, A., Neumann, F. R. & Gartenberg, M. R. The function of telomere clustering in yeast: the circe effect. Cold Spring Harb. Symp. Quant. Biol. 69, 327–337 (2004).
Article CAS PubMed Google Scholar
Rosa, A. & Everaers, R. Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 4, e1000153 (2008).
Article PubMed PubMed Central Google Scholar
Zimmer, C. & Fabre, E. Principles of chromosomal organization: lessons from yeast. J. Cell Biol. 192, 723–733 (2011).
Article CAS PubMed PubMed Central Google Scholar
Berger, A. B. et al. High-resolution statistical mapping reveals gene territories in live yeast. Nat. Methods 5, 1031–1037 (2008).
Article CAS PubMed Google Scholar
Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).
Article CAS PubMed PubMed Central Google Scholar
Miura, F. et al. Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs. BMC Genom. 9, 574 (2008).
Comments (0)