Mukhamediev RI, Popova Y, Kuchin Y, Zaiteseva E, Kalimodayev A, Symagulov A, et al. Review of artificial intelligence and machine learning technologies: classification, restrictions, opportunities and challenges. Mathematics. 2022;10(15):2552.
Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19(1):64.
Article PubMed PubMed Central Google Scholar
Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci. 2021;2(3):160.
Article PubMed PubMed Central Google Scholar
Yang S, Zhu F, Ling X, Liu Q, Zhao P. Intelligent health care: applications of deep learning in computational medicine. Front Genet. 2021;12:607471.
Article CAS PubMed PubMed Central Google Scholar
Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: an updated review. Cont Lens Anterior Eye. 2022;45(3):101559.
Larkin DFP, Chowdhury K, Burr JM, Raynor M, Edwards M, Tuft SJ, et al. Effect of corneal cross-linking versus standard care on keratoconus progression in young patients: the KERALINK randomized controlled trial. Ophthalmology. 2021;128(11):1516–26.
Chanbour W, El Zein L, Younes MA, Issa M, Warhekar P, Chelala E, et al. Corneal cross-linking for keratoconus and post-LASIK ectasia and failure rate: a 3 years follow-up study. Cureus. 2021;13(11):e19552.
PubMed PubMed Central Google Scholar
Chan C, Saad A, Randleman JB, Harissi-Dagher M, Chua D, Qazi M, et al. Analysis of cases and accuracy of 3 risk scoring systems in predicting ectasia after laser in situ keratomileusis. J Cataract Refract Surg. 2018;44(8):979–92.
Shi Y. Strategies for improving the early diagnosis of keratoconus. Clin Optom (Auckl). 2016;8:13–21.
Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38(11):2290–9.
Kuo BI, Chang WY, Liao TS, Liu FY, Liu HY, Chu HS, et al. Keratoconus screening based on deep learning approach of corneal topography. Transl Vis Sci Technol. 2020;9(2):53.
Article PubMed PubMed Central Google Scholar
Mohammadpour M, Heidari Z, Hashemi H, Yaseri M, Fotouhi A. Comparison of artificial intelligence-based machine learning classifiers for early detection of keratoconus. Eur J Ophthalmol. 2022;32(3):1352–60.
Cao K, Verspoor K, Chan E, Daniell M, Sahebjada S, Baird PN. Machine learning with a reduced dimensionality representation of comprehensive Pentacam tomography parameters to identify subclinical keratoconus. Comput Biol Med. 2021;138:104884.
Feng R, Xu Z, Zheng X, Hu H, Jin X, Chen DZ, et al. KerNet: a novel deep learning approach for keratoconus and sub-clinical keratoconus detection based on raw data of the Pentacam HR system. IEEE J Biomed Health Inform. 2021;25(10):3898–910.
Lu NJ, Koppen C, Hafezi F, Ní Dhubhghaill S, Aslanides IM, Wang QM, et al. Combinations of Scheimpflug tomography, ocular coherence tomography and air-puff tonometry improve the detection of keratoconus. Cont Lens Anterior Eye. 2023;46(3):101840.
Lu NJ, Elsheikh A, Rozema JJ, Hafezi N, Aslanides IM, Hillen M, et al. Combining spectral-domain OCT and air-puff tonometry analysis to diagnose keratoconus. J Refract Surg. 2022;38(6):374–80.
Article CAS PubMed Google Scholar
Al-Timemy AH, Ghaeb NH, Mosa ZM, Escudero J. Deep transfer learning for improved detection of keratoconus using corneal topographic maps. Cogn Comput. 2022;14(5):1627–42.
Yousefi S, Yousefi E, Takahashi H, Hayashi T, Tampo H, Inoda S, et al. Keratoconus severity identification using unsupervised machine learning. PLoS One. 2018;13(11):e0205998.
Article PubMed PubMed Central Google Scholar
Hashemi H, Doroodgar F, Niazi S, Khabazkhoob M, Heidari Z. Comparison of different corneal imaging modalities using artificial intelligence for diagnosis of keratoconus: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2023. https://doi.org/10.1007/s00417-023-06154-6.
Shetty R, Kundu G, Narasimhan R, Khamar P, Gupta K, Singh N, et al. Artificial intelligence efficiently identifies regional differences in the progression of tomographic parameters of keratoconic corneas. J Refract Surg. 2021;37(4):240–8.
Kundu G, Shetty N, Shetty R, Khamar P, D’Souza S, Meda TR, et al. Artificial intelligence-based stratification of demographic, ocular surface high-risk factors in progression of keratoconus. Indian J Ophthalmol. 2023;71(5):1882–8.
Article PubMed PubMed Central Google Scholar
Zéboulon P, Debellemanière G, Bouvet M, Gatinel D. Corneal topography raw data classification using a convolutional neural network. Am J Ophthalmol. 2020;219:33–9.
Askarian B, Tabei F, Tipton GA, Chong JW. Novel keratoconus detection method using smartphone. In: Askarian B, editor. 2019 IEEE healthcare Innovations and point of care technologies, (HI-POCT). Bethesda: IEEE; 2019. p. 60–2. https://doi.org/10.1109/HI-POCT45284.2019.8962648.
Nokas G, Kotsilieris T. Preventing keratoconus through eye rubbing activity detection: a machine learning approach. Electronics. 2023;12(4):1028.
Cabrera-Aguas M, Khoo P, Watson SL. Infectious keratitis: a review. Clin Exp Ophthalmol. 2022;50(5):543–62.
Article PubMed PubMed Central Google Scholar
Ting DSJ, Ho CS, Deshmukh R, Said DG, Dua HS. Infectious keratitis: an update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye (Lond). 2021;35(4):1084–101.
Stapleton F. The epidemiology of infectious keratitis. Ocul Surf. 2023;28:351–63.
Wang L, Chen K, Wen H, Zheng Q, Chen Y, Pu J, et al. Feasibility assessment of infectious keratitis depicted on slit-lamp and smartphone photographs using deep learning. Int J Med Inform. 2021;155:104583.
Ung L, Bispo PJM, Shanbhag SS, Gilmore MS, Chodosh J. The persistent dilemma of microbial keratitis: global burden, diagnosis, and antimicrobial resistance. Surv Ophthalmol. 2019;64(3):255–71.
Khor WB, Prajna VN, Garg P, Mehta JS, Xie L, Liu Z, et al. The Asia Cornea Society Infectious Keratitis Study: a prospective multicenter study of infectious keratitis in Asia. Am J Ophthalmol. 2018;195:161–70.
Truong DT, Bui MT, Cavanagh HD. Epidemiology and outcome of microbial keratitis: private university versus urban public hospital care. Eye Contact Lens. 2018;44(Suppl 1):S82–6.
Article PubMed PubMed Central Google Scholar
Walkden A, Fullwood C, Tan SZ, Au L, Armstrong M, Brahma AK, et al. Association between season, temperature and causative organism in microbial keratitis in the UK. Cornea. 2018;37(12):1555–60.
Article PubMed PubMed Central Google Scholar
Tena D, Rodríguez N, Toribio L, González-Praetorius A. Infectious keratitis: microbiological review of 297 cases. Jpn J Infect Dis. 2019;72(2):121–3.
Article CAS PubMed Google Scholar
Henry CR, Flynn HW Jr, Miller D, Forster RK, Alfonso EC. Infectious keratitis progressing to endophthalmitis: a 15-year study of microbiology, associated factors, and clinical outcomes. Ophthalmology. 2012;119(12):2443–9.
Ghosh AK, Thammasudjarit R, Jongkhajornpong P, Attia J, Thakkinstian A. deep learning for discrimination between fungal keratitis and bacterial keratitis: DeepKeratitis. Cornea. 2022;41(5):616–22.
Liang S, Zhong J, Zeng H, Zhong P, Li S, Liu H, et al. A structure-aware convolutional neural network for automatic diagnosis of fungal keratitis with in vivo confocal microscopy images. J Digit Imaging. 2023;36(4):1624–32.
Article PubMed PubMed Central Google Scholar
Essalat M, Abolhosseini M, Le TH, Moshtaghion SM, Kanavi MR. Interpretable deep learning for diagnosis of fungal and acanthamoeba keratitis using in vivo confocal microscopy images. Sci Rep. 2023;13(1):8953.
Article CAS PubMed PubMed Central Google Scholar
Hau SC, Dart JK, Vesaluoma M, Parmar DN, Claerhout I, Bibi K, et al. Diagnostic accuracy of microbial keratitis with in vivo scanning laser confocal microscopy. Br J Ophthalmol. 2010;94(8):982–7.
Natarajan R, Matai HD, Raman S, Kumar S, Ravichandran S, Swaminathan S, et al. Advances in the diagnosis of herpes simplex stromal necrotising keratitis: a feasibility study on deep learning approach. Indian J Ophthalmol. 2022;70(9):3279–83.
Comments (0)