Evaluation of the association between osteoporotic vertebral compression fractures and psoas major/paraspinal muscle mass and ADC measured on MRI

Assessment of fracture risk and its application in screening for postmenopausal osteoporosis: report of a WHO study group. World Health Organ Tech Rep Ser. 1994;843:1–129.

Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015;1(1):9–13. https://doi.org/10.1016/j.cdtm.2015.02.006.

Article  PubMed  PubMed Central  Google Scholar 

Shiraki M, Kuroda T, Tanaka S. Established osteoporosis was associated with high mortality after adjusting for age and co-mobility in postmenopausal Japanese women. Intern Med. 2011;50(5):397–404. https://doi.org/10.2169/internalmedicine.50.4437.

Article  PubMed  Google Scholar 

Harrison RA, Siminoski K, Vethanayagam D, Majumdar SR. Osteoporosis-related kyphosis and impairments in pulmonary function: a systematic review. J Bone Miner Res. 2007;22(3):447–57. https://doi.org/10.1359/jbmr.061202.

Article  PubMed  Google Scholar 

Schlaich C, Minne HW, Bruckner T, et al. Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int. 1998;8(3):261–7. https://doi.org/10.1007/s001980050063.

Article  CAS  PubMed  Google Scholar 

Ensrud KE, Thompson DE, Cauley JA, et al. Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. J Am Geriat Soc. 2000;48(3):241–9. https://doi.org/10.1111/j.1532-5415.2000.tb02641.x.

Article  CAS  PubMed  Google Scholar 

Blake GM, Fogelman I. Role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J. 2007;83(982):509–17. https://doi.org/10.1136/pgmj.2007.057505.

Article  PubMed  PubMed Central  Google Scholar 

Rand T, Seidl G, Kainberger F, et al. Impact of spinal degenerative changes on the evaluation of bone mineral density using dual-energy X-ray absorptiometry (DXA). Calcif Tissue Int. 1997;60(5):430–3. https://doi.org/10.1007/s002239900258.

Article  CAS  PubMed  Google Scholar 

Bandirali M, Di Leo G, Papini GD, et al. A new diagnostic score to detect osteoporosis in patients undergoing lumbar spine MRI. Eur Radiol. 2015;25(10):2951–9. https://doi.org/10.1007/s00330-015-3699-y.

Article  PubMed  Google Scholar 

He J, Fang H, Li X. Vertebral bone marrow diffusivity in normal adults with varying bone densities on 3T diffusion-weighted imaging. Acta Radiol. 2018;59(1):89–96. https://doi.org/10.1177/0284185117704235.

Article  PubMed  Google Scholar 

Momeni M, Asadzadeh M, Mowla K, Hanafi MG, Gharibvand MM, Sahraeizadeh A. Sensitivity and specificity assessment of DWI and ADC for the diagnosis of osteoporosis in postmenopausal patients. Radiol Med. 2020;125(1):68–74. https://doi.org/10.1007/s11547-019-01080-2.

Article  PubMed  Google Scholar 

Delmonico MJ, Beck DT. The current understanding of sarcopenia emerging tools and interventional possibilities. Am J Lifestyle Med. 2016;11(2):167–81. https://doi.org/10.1177/1559827615594343.

Article  PubMed  PubMed Central  Google Scholar 

Taniguchi Y, Makizako H, Kiyama R, et al. The association between osteoporosis and grip strength and skeletal muscle mass in community-dwelling older women. Int J Environ Res Public Health. 2019;16:1228. https://doi.org/10.3390/ijerph16071228.

DI Monaco M, Castiglioni C, Bardesono F, et al. Is sarcopenia associated with osteoporosis? A cross-sectional study of 262 women with hip fracture. Eur J Phys Rehabil Med. 2022;58:638–45. https://doi.org/10.23736/S1973-9087.22.07215-X.

Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48. https://doi.org/10.1002/jbmr.5650080915.

Article  CAS  PubMed  Google Scholar 

Hamaguchi Y, Kaido T, Okumura S, et al. Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition. 2016;32(11–12):1200–5. https://doi.org/10.1016/j.nut.2016.04.003.

Bigdon SF, Saldarriaga Y, Oswald KAC, et al. Epidemiologic analysis of 8000 acute vertebral fractures: evolution of treatment and complications at 10-year follow-up. J Orthop Surg Res. 17(1):270. https://doi.org/10.1186/s13018-022-03147-9.

Fernández-de Thomas RJ, De Jesus O. Thoracolumbar Spine Fracture. Treasure Island (FL): StatPearls Publishing; 2023.

Google Scholar 

Asomaning K, Bertone-Johnson ER, Nasca PC, Hooven F, Pekow PS. The association between body mass index and osteoporosis in patients referred for a bone mineral density examination. J Womens Health (Larchmt). 2006;15(9):1028–34. https://doi.org/10.1089/jwh.2006.15.1028.

Article  PubMed  Google Scholar 

Murata Y, Nakamura E, Tsukamoto M, et al. Longitudinal study of risk factors for decreased cross-sectional area of psoas major and paraspinal muscle in 1849 individuals. Sci Rep. 2021;11(1):16986. https://doi.org/10.1038/s41598-021-96448-8.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Dreischarf M, Albiol L, Rohlmann A, et al. Age-related loss of lumbar spinal lordosis and mobility-a study of 323 asymptomatic volunteers. PLoS One. 2014;9(12):e116186. https://doi.org/10.1371/journal.pone.0116186.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Amonoo-Kuofi HS. Changes in the lumbosacral angle, sacral inclination and the curvature of the lumbar spine during aging. Acta Anat (Basel). 1992;145(4):373–7. https://doi.org/10.1159/000147392.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Dilixiati Y, Jiang, et al. Correlation of Psoas Muscle Index with Fragility Vertebral Fracture: A Retrospective Cross-Sectional Study of Middle-Aged and Elderly Women. Int J Endocrinol. 2022;2022:4149468. https://doi.org/10.1155/2022/4149468.

Jeon I, Kim SW, Yu D. Paraspinal muscle fatty degeneration as a predictor of progressive vertebral collapse in osteoporotic vertebral compression fractures. Spine J. 2002;22(2):313–20. https://doi.org/10.1016/j.spinee.2021.07.020.

Article  Google Scholar 

Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33(5):997–1006. https://doi.org/10.1139/H08-075.

Article  PubMed  Google Scholar 

Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011;12(5):489–95. https://doi.org/10.1016/S1470-2045(10)70218-7.

Article  PubMed  Google Scholar 

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23. https://doi.org/10.1093/ageing/afq034.

Article  PubMed  PubMed Central  Google Scholar 

Boutin RD, Lenchik L. Value-added opportunistic CT: Insights into osteoporosis and sarcopenia. AJR Am J Roentgenol. 2020;215(3):582–94. https://doi.org/10.2214/AJR.20.22874.

Article  PubMed  Google Scholar 

Tan L, Ji G, Bao T, Fu H, Yang L, Yang M. Diagnosing sarcopenia and myosteatosis based on chest computed tomography images in healthy Chinese adults. Insights Imaging. 2021;12(1):163. https://doi.org/10.1186/s13244-021-01106-2.

Article  PubMed  PubMed Central  Google Scholar 

Baggerman MR, van Dijk DPJ, Winkens B, et al. Edema in critically ill patients leads to overestimation of skeletal muscle mass measurements using computed tomography scans. Nutrition. 2021;89: 111238. https://doi.org/10.1016/j.nut.2021.111238.

Article  PubMed  Google Scholar 

Engelke K, Museyko O, Wang L, Laredo JD. Quantitative analysis of skeletal muscle by computed tomography imaging—State of the art. J Orthop Translat. 2018;15:91–103. https://doi.org/10.1016/j.jot.2018.10.004.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif